
             
A Data-Aware Grid for Visual Basic 3.0 Data Access
This is a demo version of TrueGrid.    We believe we've created the easiest-to-use database grid available
and appreciate your interest in this demo.    It is identical in features and functionality to the full TrueGrid
product, except that it will only operate in Visual Basic design mode.    We want to make it easy for you to
get a good idea of what TrueGrid offers, how it operates, and how flexible it is.

We've put together a demo program which runs during design-time.    The demo program is called
TGDEMO.MAK.    To run the demo, you should:

1. Run Visual Basic.

2. Open the TGDEMO.MAK project.

3. Run the application.

The TGDEMO program is self-explanatory and has a window called the Navigator which describes each
of the demos and how to operate them.

Running TGDEMO is the quickest way to understand how TrueGrid operates, but you can also develop
your own design-time applications using the demo.    We've provided thorough documentation with the
demo, so you can understand how all of the properties and events operate.

If you like TrueGrid, and want one for your very own, you can order one directly from Apex at 1-800-858-
APEX.    You can also fax in your order at 1-412-681-4384.    For other questions and information, call
Apex at 1-412-681-4343.    We would be glad to provide you with some assistance with the demo, but
can't provide the level of support we offer for product owners.    The easiest way to contact us is by using
CompuServe.    Brian Hess (71053,1062) would be glad to help you and answer any of your questions.

As of this writing (August 1, 1993), TrueGrid is $69 when purchased from Apex.

This help file is a trimmed-down version of the actual help file which ships with TrueGrid.    To save space,
we've omitted the sections describing the examples which ship with TrueGrid (you don't have those
anyway).    We've also removed some of the larger graphic images to save space.

If you want, you can begin developing using the demo version of TrueGrid, since it has the same product
features as the production version.    However, when you purchase a production TrueGrid, you will need to
recreate any TrueGrid controls you were using in the demo and reset the design-time properties they way
they were originally.

Here's the table of contents for the on-line TrueGrid documentation:
    Overview of TrueGrid
    How to use TrueGrid's features, step-by-step
    Summary of Features
    Property Reference
    Event Reference

This is the "Silverado" Version (1.0, DEMO) of TrueGrid, Patch Level A
Copyright (c) Apex Software Corporation, 1993.    All rights reserved.

 How to Use TrueGrid
Configuring TrueGrid Database Properties

 Associating a grid with a Visual Basic Data Control
 How field and column layouts are chosen

Working with TrueGrid Columns

 Design time column layouts using the Layout Editor
 Adding columns at run time
 Adjusting column properties using Visual Basic code
 Allowing the user to reconfigure grid appearance at runtime
 Using column edit masks

TrueGrid Database Application Techniques

 Using TrueGrid for SQL query results
 Data validation techniques
 Coordinating multiple TrueGrid controls
 Using the BookmarkList to highlight query result rows

How Your Programs Interact with TrueGrid

 How TrueGrid reacts to Dynaset changes
 Data Control interaction and how TrueGrid responds
 TrueGrid live data updates and Validate handlers
 Row numbers and what they mean
 Eliminating unwanted grid refresh

Configuring the Color and Appearance of TrueGrid

 TrueGrid color settings
 How to give the grid a 3-dimensional appearance
 Displaying grid lines between rows or columns
 Changing the appearance of the marquee

Using TrueGrid's Multiple Selection Feature

 Multiple selection overview
 How the user selects multiple rows
 Working with the list of marked rows in your programs
 Clearing marked rows using Visual Basic code

Using TrueGrid in Callback (Application) mode

 Introduction to TrueGrid Callback mode
 Steps to create a Callback mode application
 Creating a user friendly callback program

 Overview
TrueGrid simplies programming by being an easy to use data bound grid for Visual Basic 3.0.    The
technology is derived from the data grid we provide with our Agility database product, so it has been well
tested and thouroughly enhanced to satisfy the peculiarities of database usage.

The major attraction is that the grid is very easy to use, requiring no more skill than simply dropping the
grid on the form and setting the DataSource property---that's it!    You don't need to write a single line of
code to get the grid up and running.    It's ideal for a data browser or display window.

The grid works with all formats that Visual Basic recognizes.    Any database that you can use with Visual
Basic you can use with the grid.

We've spent a lot of time trying to make TrueGrid the inexpensive alternative for Visual Basic data access
users.    We hope you enjoy using it.    If you need technical assistance, please call and talk to us.    We'd
be glad to help.

The How to Use TrueGrid section provides detailed examples and instructions on how to use the grid.    If
you're already very familiar with Visual Basic and other custom controls, you may want to quickly peruse
the Property Listing and Event Listing

 Features
The following is a highlight of some of the major features of TrueGrid:

1. Drop-and-go behavior.    Drop the grid on the form and setting DataSource are all you need to do
to have a working, editable, data grid.

2. Responds to changes you make to the Data control or Dynaset using a deferred response
scheme.    So, if your program does a MoveNext 10 times, the grid will respond only once by
moving the highlighted row.    This makes programming effortless, since the grid worries about
efficiency and all you worry about is you program.

3. Updatable.    Records can be changed in the grid and are updated automatically to the     
database.

4. Handles databases of any size.    No memory overhead for large tables.

5. Responds to database movement, queries, FindFirst, Refresh, UpdateData, UpdateControls,
RecordSet changes via SQL, etc.    In other words, everything you do will be reflected in the grid.

6. Customizable color schemes, 3D appearance, row highlighting styles.

7. Automatic per-column edit masks using Format$ strings.

8. Column layout can be set up at design time, using the Layout Editor, or will automatically be
derived at runtime.

9. Column properties for fieldname, heading, data size, column width, editability, justification, edit
mask.

10. Per-column validation routines.

11. Works with all database formats supported by VB3.

Configuring TrueGrid Database Properties

 Associating a grid with a Visual Basic Data Control
 How field and column layouts are chosen

Associating a grid with a Visual Basic Data Control
You can make an association between a TrueGrid data bound control and a Visual Basic data control by
setting the DataSource property of the grid after the data control has been created on the same form.   
This is all you need to do to make TrueGrid fully aware of the database in your application.

Once such a link exists, TrueGrid respects the information present in the data control to simplify further
refinement of your application:

Once the grid has been associated with a data control, you can click on the Layout property and
TrueGrid will ask whether you want to use the field layout of the database automatically.

When you run you application, TrueGrid will automatically respond by displaying the contents of
the database opened by the data control.    Data will be fully available at runtime, and can be
edited as well.

Any changes you make to the data control will be automatically sensed by TrueGrid and it will update its
display accordingly.    However, TrueGrid waits until the system is idle before performing such display
updates, since programs may want perform many actions before it is necessary to syncrhonize the
display.

How field and column layouts are chosen
In a TrueGrid display, each column represents a single field of data.    For each column, the grid needs to
know the fieldname associated with the data, and optionally a heading to be displayed above the data
column.

TrueGrid gets information about field names and headings in one of three ways:

1. At design time, you can select the Layout editor to specify column information manually.

2. At design time, when you attempt to use the Layout editor for the first time, TrueGrid asks if you
want to use the field definitions in the database rather than definining them yourself.    This makes
the initial layout simple to create, and you can easily modify it with further use of the layout editor.

3. If you don't define a layout at design time at all, TrueGrid will automatically create one based
upon the database used when you run your program.    This mode is the most automatic of all and
is quite acceptable for most quick applications.

At run time, you can perform database actions which may alter the layout needed to display the data.   
For example:

1. You may change the Database or Connect strings in the Data Control, which results in a different
database.

2. You may change the RecordSource property of the Data Control (for example, to invoke an SQL
query).

In all such cases, the grid will automatically sense the new column layout and reconfigure itself.    But, if
you defined a design-time layout yourself, the grid won't change the layout at all, assuming that you want
total control of the grid's appearance.

Working with TrueGrid Columns

 Design time column layouts using the Layout Editor
 Adding columns at run time
 Adjusting column properties using Visual Basic code
 Allowing the user to reconfigure grid appearance at runtime
 Using column edit masks

Design Time Column Layouts using the Layout Editor
The Layout Editor can be used at design time by clicking on the Layout property.    Alternately, you can
click with the right mouse button over a specific grid to make the layout editor appear.    Each grid has its
own layout of columns, and the layout editor can be used to add, remove, and modify the column layout.   
All of the layout information is saved as part of your Visual Basic project, so it will be used at runtime
automatically.

If your grid is associated with a database, then you will be prompted to find out if you want to use the field
layout of the database for your initial column layout.    If you say No, then you can design your column
layout from scratch anyway you wish.

The layout editor shows a copy of the grid control in a dialog, with a special menu which can be popped
up using the right mouse button:

[Picture of Layout Editor omitted to save space for demo help file.]

The pop-up menu controls settings for only a single column---the column you clicked over.    For the
Heading Text, Field Name, and Edit Mask properties, choosing an item allows you to edit the respective
text.    All text editing occurs inside the heading area for the given column, although the text normally
displayed there is the Heading Text item.

Adding Columns at Run Time
Using grid properties and Visual Basic code, you can add columns to the grid at runtime.    You can even
perform complete grid configuration yourself, rather than using the interactive tools.

Here is an example of how a column can be added to the grid at runtime:
nextc% = Table1.Columns + 1 ' index of next column

' add a column with new properties
Table1.ColumnField(nextc%) = "firstname"
Table1.ColumnName(nextc%) = "First Name"
Table1.ColumnWidth(nextc%) = 25

Note that simply assigning to one of the column properties with a column number one greater than the
final column will automatically add a new column.    (Note that just after the first assignment,
Table1.Columns returns the new, higher value).

Once added, the new column will be automatically linked to the DataSource database, if one is opened.

You cannot remove columns invidually, but you can hide them (using the ColumnStyle) property.    You
can also remove all of the columns from the grid layout with the following line of code:

Table1.Columns = 0
Adjusting Column Properties using Visual Basic Code
Existing column properties can be changed at runtime using Visual Basic code.    For example, changing
ColumnField can be done as follows:

Table1.ColumnField(3) = "DateofBirth"
When this statement is executed, the grid will automatically refresh any data in column 3 by refreshing it
from the database.    Thus, such changes will be reflected automatically by the grid.

Here are the column properties you may wish to change:

ColumnName The heading for the specified column.
ColumnField The field name associated with the specified column.
ColumnWidth The display width, in characters of the grid's font.
ColumnSize The maximum data entry width, in characters.
ColumnStyle The column justification and visibility bits.
EditMask The edit mask for the column.

Changing any of the above properties causes the grid to respond by updating its display to reflect the
change.

Allowing the User to Reconfigure Grid Appearance at Runtime
If the Configurable is True (which is the default), then TrueGrid allows the user to interactively move and
adjust the column layout at runtime.

All user adjustment is made with the mouse, as follows:

1. If VertLines is set so that vertical column separators are visible, then a special "move line" cursor
will appear when the user has the mouse positioned over a vertical line.    In such cases, the user
may grab the separator and drag it to the left or right, thereby enlarging or shrinking the column
immediately to the left of the line.

2. If Headings is true, making grid column headings visible, then the user may hold down the mouse
over a column heading.    The entire column becomes highlighted and it can be dragged to the left
or right to change the column ordering.    Note that this does not change the indexes used in your
program to refer to columns in the grid.    No matter where the user moves the leftmost column, it
will remain column 0 to your program.    (This is accomplished by having a separate property,
ColumnOrder, which designates the visual order of columns.)

3. Columns may be shrunk to nothing (using the technique in item 1), in which case the
ColumnVisible property for the column is set to false, although the column is not physically
removed from the grid.

If the grid is not configurable (the Configurable property is set to false), then no user configuration will be
permitted and all mouse events are passed to standard event handlers such as MouseDown.

Using Column Edit Masks
Each column has an optional edit mask associated with it.    The edit mask can be set in two ways:

1. The EditMask menu item can be selected from the Layout Editor at design time to set an edit
mask for the column.

2. At run time, the EditMask property can be set in Visual Basic code to specify an edit mask for the
column.    The column will automatically be refreshed to reflect the newly edited appearance of the
columns.

Edit masks in TrueGrid are the standard Visual Basic Format Strings used in the Format$ function.

The edit mask is used only for the display of data in the grid.    When a cell is opened for editing, the
actual underlying data is displayed, rather than the edited value.    When editing is complete, TrueGrid
displays the changed data in red until database motion or an Update method causes the data to be
written back to the database.    This tells the user that the data has been changed, but still hasn't been
updated.    The grid displays the changed data without applying the EditMask so that the actual data can
be examined.    Once the data is updated, TrueGrid applies the edit mask to the data and removes the red
highlighting.

TrueGrid Database Application Techniques

 Using TrueGrid for SQL query results
 Data validation techniques
 Coordinating multiple TrueGrid controls
 Using the BookmarkList to highlight query result rows

Using TrueGrid for SQL Query Results
One important use for TrueGrid's ability to automatically sense changes to the database at runtime is for
displaying the results of ad-hoc SQL queries.

For example, assume that a grid is connected to the data control, Data1, and that a query button is
provided which contains code similar to this:

Sub QueryButton_Click ()
' Copy SQL query to RecordSource
Data1.RecordSource = QueryText.Text

' Refresh data set ... connected grid will respond
' automatically

Data1.Refresh
End Sub

This simple example illustrates two important points:

1. No code is necessary to tell the grid what to do.    The change to the RecordSource property will
be detected by the grid and it will display the new query result automatically.

2. The grid will automatically change its field layout to match the new configuration of the query
result.    This can be important if the query uses aggregate functions (such as count()) or
specifies alternate field lists or calculated fields.

The second point is especially interesting.    Imagine an SQL query such as this:
SELECT COUNT(*) FROM EMP

The above query returns a single row, containing a single value which is the number of rows in the
database EMP.    The grid will display the result like this:

[Picture of COUNT result omitted to save space for demo help file.]

Notice that a single column is displayed (called "Calc#0" since no name was given to the result field) and
a single query row containing the count result (641) is displayed.

Similarly, you can select only some fields in a query, such as the following:
SELECT FIRST, LAST, TITLE FROM EMP WHERE ZIP >= 90000

The above query will select only three fields, but contingent upon a zip code condition.    The result looks
like this:

[Picture of query result omitted to save space for demo help file.]

Notice how the field headings have been reconfigured automatically to reflect the new column layout.   
The grid will also respond to queries which have expressions instead of simple field names:

SELECT FIRST, UCASE(LAST), TITLE FROM EMP WHERE ZIP >= 90000
Now, the query result includes a calculated column instead, which reflects the result of changing the last
name field to upper case:

[Picture of query result omitted to save space for demo help file.]

You can also give calculated columns names by including an "AS" clause in your SQL statement:

SELECT FIRST, UCASE(LAST) AS UPPERLAST
FROM EMP WHERE ZIP >= 90000

In this case, the query result table will include the name of the calculated column:

[Picture of query result omitted to save space for demo help file.]

Whether giving users access to SQL statements directly, or using these features in your program,
TrueGrid provides a powerful mechanism for direct display of SQL queries.    Since TrueGrid configures
itself automatically, very little programming is necessary to create an extremely powerful user interface.

Data Validation Techniques
TrueGrid includes protocols for several data validation techniques.    When data is updated directly using
the grid, a special protocol is followed:

1. When a cell is opened for editing, the user can make changes directly to the data in the grid.   
When completed, the grid Validate event is triggered.    This gives you the immediate opportunity
to reject or accept data as it is being entered.    If validation doesn't fail, the grid Update event is
triggered, indicating that data has been successfully updated by the user.    This does not indicate
that the data has been written to the database ... only that the user has changed the visible data
in the grid.

The grid Validate and Update events are useful for providing the user with immediate feedback
about the data they have entered.

2. Changed data is held in the grid until it is updated to the database, no matter how many changes
are made to the current row.    Data is updated to the database when (1) the record pointer is
moved for any reason, (2) when an UpdateRecord method is sent to the data control associated
with the grid.

Two grid properties, ColumnChanged and ColumnText are used to determine what data in the current row
has been modified by the user.    Of course, you can determine this directly by putting code in the grid
Validate and Update handlers, but it is often easier to rely on the grids bookkeepping and check all of the
data later.

The ColumnChanged property returns True if data in the specified column has been changed by the user,
but not yet updated to the database (it appears in red in such circumstances).    The ColumnText property
returns the text of the specified column cell.    The text will be the edited text if ColumnChanged is True
and will be the database text if ColumnChanged is False for that column.

For example, in the data control Validate handler, you could examine all of the columns in the grid to
determine if all of the changes are valid:

' Check all grid data which has been changed

For i% = 1 To Table1.Columns
If Table1.ColumnChanged(i%) Then

ValidateData i%, Table1.ColumnText(i%)
End If

Next i%
When data is successfully updated, all of the ColumnChanged values are set to False (as is the
DataChanged property for the grid, which reflects the overall change state of the grid).

Coordinating Multiple TrueGrid Controls
You can link multiple TrueGrid controls together by using the RowChange event to trigger related actions.

Whenever the highlighted row moves in the grid, the RowChange event is sent, indicating that a new row
has become current.    RowChange is triggered in the following cases:

1. If the user clicks on a new row in the grid.

2. If program code moves the record pointer (using methods like MoveFirst, MoveNext, FindNext,

etc.).

3. If the data in the grid is refreshed.

4. If the user moves the record pointer using the navigation buttons on the data control associated
with the grid.

The RowChange handler is a convenient place to coordinate activities with other controls or databases.

For example, assume that you have one grid (CustTable) containing customers and another
(CustInvTable) containing invoices for the customer.    CustTable is linked to data control CustData and
CustInvTable is linked to data control CustInvData.    You could use the RowChange handler in CustTable
to perform an SQL selection so that invoices are always displayed as new customers are selected:

Sub CustTable_RowChange ()
' Get the customer number for the new row
custid$ = CustData.RecordSet("CustNum")

' Build a query for the invoice database
cquery$ = "SELECT * FROM CUSTINV WHERE CUSTNUM = " & custid$

' Invoke the query, which causes the second grid to update
' automatically.

CustInvData.RecordSource = cquery$
CustInvData.Refresh

End Sub
Again, note that no special handling is required for the grids associated with the data controls.    They
respond automatically to changes made by such code.

Using the BookmarkList to Highlight Rows
TrueGrid has a powerful multi-row selection feature which relies on bookmarks.    One or more grid rows
can be selected (and are displayed differently using the SelectedForeColor and SelectedBackColor).

The grid maintains a list of all selected rows in the BookmarkList property.    Here's how BookmarkList
behaves:

1. The user can select a row by moving the cursor to the leftmost area of the grid and clicking.   
When this happens, the grid automatically adds the newly selected row to the BookmarkList and
updates BookmarkCount.    The opposite happens when a user deselects a selected row.    (The
SelectMode property has to be set so that this is enabled.)

2. You can examine the contents of BookmarkList at any time to find out which rows are selected.

3. You can set an element of BookmarkList to an empty string ("") to remove the bookmark at that
position.    The selected row will no longer be highlighted and BookmarkCount will automatically
be decremented.    (TrueGrid will move all the bookmarks up one position to fill the empty slot in
the BookmarkList property array.)

4. You can add bookmarks to the bookmark list yourself by adding them at the end.    The grid will
automatically highlight any visible rows which correspond to your new bookmarks.

5. By setting BookmarkCount to zero (0), you can clear the entire selection.

This facility is extremely powerful.    For example, you could highlight all rows in the grid containing
employees who have the title "Manager" with the following simple subroutine:

Sub HighlightManagers()
' Set criteria for FindFirst/FindNext
criteria$ = "TITLE = " + chr$(34) + "Manager" + chr$(34)

' Loop through, adding each manager to the BookmarkList

Data1.RecordSet.FindFirst criteria$
While Not Data1.RecordSet.EOF

Table1.BookmarkList(Table1.BookmarkCount) =
Data1.RecordSet.Bookmark

Data1.RecordSet.FindNext criteria$
Wend

End Sub
When the above loop is complete, all of the bookmarked rows will automatically be highlighted in the grid
and the user can view the results.

You can also move the pointer to one of the current bookmarks:
Data1.RecordSet.Bookmark = Table1.BookmarkList(0)

This moves the record pointer (and the grid highlighting) to the first selected row.

How Your Programs Interact with TrueGrid

 How TrueGrid reacts to Dynaset changes
 Data Control interaction and how TrueGrid responds
 TrueGrid live data updates and Validate handlers
 Row numbers and what they mean
 Eliminating unwanted grid refresh

How TrueGrid Reacts to Dynaset changes
When you link a grid to a data control, you are actually linking the grid to the underlying Dynaset which is
managed by the data control.    The Dynaset can be accessed directly by using the RecordSet property of
the data control:

Data1.RecordSet.MoveFirst
The above line positions the record pointer of the Dynaset to the first record in the record set.

You needn't worry about keeping the grid synchronized with changes made to the Dynaset.    This
happens automatically.    In fact, modifying the Dynaset is the preferred way to affect changes to the grid
display.

Here is how the grid responds to various operations performed on the Dynaset associated with the data
control:

MoveFirst, MoveNext, MoveLast, MovePrevious
The grid will move its highlight in response to these methods when they are invoked on
the Dynaset.    The grid optimizes its response to these messages.    Thus, if your code
performs a MoveFirst followed by 20 MoveNext methods, the grid will position to row 21
only once.    If possible, the grid will adjust its row numbering scheme and scroll bar to
reflect the new position within the database.

FindFirst, FindNext, FindLast, FindPrevious
The grid will move its higlight in response to a new row becoming current after these
methods are invoked on the Dynaset.    However, the grid may not know what actual row
number the new row possesses.    For example, FindNext may move an unspecified
number of rows forward and there is no way to determine how many.    To avoid time-
consuming counting operations, the grid simply uses a "fictitious" row number until it
gains more information about how many rows precede or follow the new row.    For the
user, this behavior is usually undetectable, but results in vast increases in speed over
alternative techniques.

AddNew This method should not be executed without a corresponding Update method to the
Dynaset, unless the Active property of the grid is False.    If the grid is active, and control
returns to the grid after an AddNew, the effect of the AddNew will be nullified.    This is
because AddNew does not actually add a row, and the grid must have an actual database
row to display.    However, if you actually update the new record, the grid will display the
new row properly when it receives control.

Update The update event causes the grid to instantly write any changed data to the database
(providing that the data control Validate handler did not suppress the operation).    Any
edited cells will be unhighlighted to indicate that the data has now been written.

Refresh Refreshing the Dynaset causes the grid to redisplay all rows of data, and analyze the field
structure of the result set to see if it has changed.    Any changes to headings or field
names will be automatically made, unless there is a design-time layout defined using the
Layout property.

The data control itself also supports several methods which affect the way the grid reacts to data
changes:

UpdateRecord

The data in the grid will be written automatically to the database.

UpdateControls
This method causes any changed data in the grid to be refreshed from the database.   
Thus, any editing done by the user is lost and the original field data will be displayed once
more.

Data Control Interaction and How TrueGrid Responds
The data control panel can be used to navigate through any grids connected to it.    Each of the buttons
performs its respective function and the row change is indicated in the grid:

* Pressing the "move to beginning" button has the same effect as a MoveFirst method sent to the
Dynaset.    The grid will position to the first row in the set.

* Pressing the "move to last" button has the same effect as a MoveLast method sent to the
Dynaset.    The grid will position to the last row in the set.

* The "move to next" and "move to previous" buttons have the same effect as MoveNext and
MovePrevious when sent to the Dynaset.    The grid will move the highlight forward or backward
by one row.

If you depress the data control buttons rapidly, the grid may have to "catch up" but will eventually
resynchronize with the new position.

If grid data has been edited, then moving the pointer using the data control will automatically trigger an
update.

TrueGrid Live Data Updates and Validate Handlers
Data in the grid can be updated directly, and validate handlers in both the grid and in the data control can
be used to control the outcome of the update.    Some details about how grid editing occurs:

1. When a cell is opened for editing, the user can make changes directly to the data in the grid.   
When completed, the grid Validate event is triggered.    If validation doesn't fail, the grid Update
event is triggered, indicating that data has been successfully modified by the user.

2. Changed data is held in the grid until it is updated to the database, no matter how many changes
are made to the current row.    Data is updated to the database when (1) the record pointer is
moved for any reason, (2) when an UpdateRecord method is sent to the data control associated
with the grid.

Two grid properties, ColumnChanged and ColumnText are used to determine what data in the current row
has been modified by the user.    The ColumnChanged property returns True if data in the specified
column has been changed by the user, but not yet updated to the database (it appears in red in such
circumstances).    The ColumnText property returns the text of the specified column cell.

TrueGrid uses bookmarks internally to navigate through the database.    Thus, whenever a data control's
Validate handler is called in response to grid movement, the DATA_ACTIONBOOKMARK action will
indicate that movement is about to occur.    In your validate handler, you have the following options:

1. You can cancel the movement, by setting the Action parameter to 0.    In such a case, the grid will
return the highlight to the original row rather than the newly selected row.    If you set the Save
parameter to False, then any user edits will remain and the user will need to change something
before continuing.    This is (typically) how invalid data is handled.

2. You can allow the movement to continue, but ignore any changes made by the grid.    You can do
this by setting the grids DataChanged property to False, which causes the grid to eliminate any
user edits it is currently displaying.

Avoid setting the Action parameter to any other value, since the grid behavior may not be as you expect
(although the grid will properly handle such changes).    For example, if you inadvertently set Action to
DATA_ACTIONMOVEFIRST, then any attempt to change to another row will force the grid back to the first
row.

Row Numbers and What They Mean
TrueGrid uses row numbers to identify rows in the grid, but in general, these row numbers are
meaningless except for some programming purposes.    This section explains why this is so.

First, Visual Basic databases and sets do not have row numbers at all.    You can move to a particular row
by moving to the first or last record, then counting from there.    If you are at a particular row, it can be
quite time consuming to determine what row you are at.    For example, if you are at an unknown row, you
could remember its bookmark, then go to the first row, counting forward until you reach the bookmarked
row.

This works well for very small databases, but for larger databases, such determinations can take minutes
(or even hours).    This is a limitation (or rather a feature, actually) of Visual Basic's data access system
and cannot be avoided.

TrueGrid was designed with efficiency as its primary concern.    Thus, although knowing exactly what row
you are at can be convenient for the programmer, it is disasterous in terms of overhead.    Thus, the grid
operates in one of three different modes, and it does so transparently to the user:

1. Neither the first nor last row number is known.    This situation occurs more often than you think.   
For example, imagine that a FindNext command has moved to a record somewhere in a 400000
record database.    There is no way to determine whether you are at row 3000 or 300000, and
finding out could take 20 minutes of searching.    To avoid this, the grid simply assumes that there
may be an unknown number of rows before and after the new row.    In such cases it makes up a
fictitious row number (usually 500000) and displays records near the current record.    The display
thus occurs instantly, and as you move forward or backward, the grid moves relative to the
fictious position until it actually hits the beginning or end of the set.    In the latter case, it updates
its information so that either the first or last row number are now known, and starts using real row
numbers.

All of this is transparent and leads to very rapid operation.    One side effect is that the scroll bars
are sometimes approximate.    In the above case, the scroll bar would be positioned roughly in the
middle, since the grid doesn't know where in the database you are actually positioned.

2. The last row number is unknown.    This is the usual cirumstance when browsing a new set which
is too large to display.    Rather than try to determine how many rows there are in the set, TrueGrid
assumes that there may be an infinite number of rows, and displays only those necessary.    As
you move forward, the grid will detect the last row when encountered and update its internal
information about the size of the set.

In this case, the scroll bar moves more slowly as you move further down in the database, since
the grid doesn't really know how many records there may be.    Once the total number of rows is
known, the scroll bar will behave in a linear fashion.

3. First and last row number are known.    In this case, the grid's Rows and RowIndex property
accurately reflect the actual row within the set.    The grid's scrollbar will be very accurate as well. 
The grid knows you are at the first row when you do a MoveFirst, and knows the last row when
you do a MoveLast.    Both of these operations (as well as scrolling to the first or last record) will
cause the grid to sense the actual row position of the data.

Once you are aware of these factors, you can more readily understand and use the values of the Rows
and RowIndex properties.

RowIndex can always be used to position to the first row:
Table1.RowIndex = 1

If the grid doesn't know what the first row is, it will determine the row number in order to satisfy your
request.    Similarly, you can always position to the last row:

Table1.RowIndex = Table1.Rows
Again, the grid will determine the total number of rows in order to position to the last row properly.    You

can also cause such positioning by sending the MoveFirst or MoveLast method to the corresponding
Dynaset associated with the grid.

So long as the grid does change from one "mode" to another, you can use the RowIndex to move the
highlight relative to visible locations in the grid.    For example, you can move the highlight to the first row
visible in the grid:

Table1.RowIndex = Table1.TopRow
or the last on the screen:

Table1.RowIndex = Table1.BottomRow
You can move the highlight forward or backward:

Table1.RowIndex = Table1.RowIndex + 1
Table1.RowIndex = Table1.RowIndex - 1

Setting RowIndex is not the recommended way to move the record pointer, although it will work.    It is
best to manipulate the Dynaset directly using methods such as MoveFirst, MoveNext.    Setting RowIndex
is useful only for special cases.

Eliminating Unwanted Grid Refresh
Normally, TrueGrid is very intellegent about deferring screen updates until it absolutely necessary.    You
should rarely need to worry about the grid's operation, and simply write code which works directly with the
database.

How does the grid sense that it may refresh?    It waits until you enter the Windows idle loop.    This
generally occurs when your code stops executing and the system is waiting for user input.    You can force
the grid to think the idle loop has been entered by executing a Visual Basic DoEvents call, which causes
all controls to become active.

In some circumstances, you may want the grid to remain "frozen" as it is and not respond to any database
changes you make.    To do this, set the grid's Active property to False temporarily while you perform
whatever action is necessary, then set it to True again when you want it to resynchronize with the
database.    Although you should rarely have to do this, one situation which demands this is the use of a
modal form which pops up while the database is in an uncertain state.    If you don't set Active to False,
then the grid will update to reflect the new database state.    If you want to avoid this while processing a
modal dialog, deactivate the grid when your dialog is displayed, and reactivate it when the dialog is
complete.

It is dangerous to leave the grid Active property set to False for any longer than necessary.    When the
Active property is False, the database position and the grid position are permitted to diverge.    This can
cause confusion for the user.    For example, the highlighted row may not be the current row at all, and
attempts to edit the data in the grid may edit the wrong row.

Configuring the Color and Appearance of TrueGrid

 TrueGrid color settings
 How to give the grid a 3-dimensional appearance
 Displaying grid lines between rows or columns
 Changing the appearance of the marquee

TrueGrid Color Settings
TrueGrid supports a wide variety of color settings to assist you in customizing the appearance of the grid.

Here are some of the colors you can change, and why you might want to change them:

ForeColor, BackColor
These colors specify the foreground and background color for the entire grid and normal
displayed text.    For 3D effects, BackColor must be set to light grey.

EditBackColor, EditForeColor
When a cell is opened for editing, it is changed to this color.    By default, the system
highlight colors are used, but this can make it difficult to see the text selection of the
edited text.

HeadBackColor, HeadForeColor
These colors are used for the heading area of the grid (providing that the Headings
property is True).    These colors are used only when the grid has focus.    When the grid
doesn't have focus, the InactiveForeColor and InactiveBackColor are used for the
headings.

InactiveBackColor, InactiveForeColor
These colors are used for the heading area of the grid when it doesn't have focus.

SelectedBackColor, SelectedForeColor
These colors are used for the display of rows which have been selected by the user, or
which are selected because their bookmarks have been added to the BookmarkList
property.

VertColor, HorzColor
These colors are used in conjunction with the HorzLines and VertLines properties to
specify the color of the grid separator lines.    For a 3D appearance, these colors should
be set to dark grey and the HorzLines and VertLines property should be set for 3D line
appearance.

How to Give the Grid a 3-Dimensional Appearance
TrueGrid supports both a standard, "flat" control appearance and the more attractive 3D appearance used
by many controls.    By default, the grid appears as a standard, non-3D control.    However, you can
achieve a 3D appearance by setting the following properties at design-time:

1. Set both the HorzLines and VertLines properties to "3D" (integer value=2).

2. Set the BackColor property to light grey.

3. Set the HorzColor and VertColor properties to dark grey.

That's all there is to it.    The grid will display cells using a 3D appearance, and the marquee will display a
raised current cell when it is set to value 4 (Highlight Row and Cell).

You can achieve a 3D effect using other color combinations, but you will need to experiment.    For
example, a rather offensive 3D display can be concocted using light and dark yellow instead of grey in the
above examples.    In our experience, grey remains the best.

Displaying Grid Lines Between Rows or Columns
The HorzLines and VertLines properties allow you to choose whether horizontal and vertical lines are
used in the grid.    Both are optional, and each have three values:

0 - None.    No lines are displayed in the given direction.

1 - Single.    A single-width line is displayed using the color specified by HorzColor or VertColor.

2 - 3D.    3-dimensional lines are used.    In this case, HorzColor and VertColor specify the darker
edge of the 3D bevel and the grid interpolates to find a lighter color for the opposite size of the
bevel.

Lines cause slightly less data to be displayed in the grid, since they take up space.    You may want to
experiment with different settings to find out what is appealing to you.

Changing the Appearance of the Marquee
The marquee is the name of the higlighted area which represents the current cell or row of the grid.    The
MarqueeStyle property can be set to have 5 possible presentations, illustrated below.

MarqueeStyle = 0 - Dotted Cell Border

This is the default appearance of the marquee:

MarqueeStyle = 1 - Solid Cell Border

This is a more distinctive form of cell highlighting, often useful when a different background color is
used (since the dotted rectangle is often difficult to spot):

MarqueeStyle = 2 - Highlight Cell

This style inverts the current cell completely, making it very visible.    Values of EditBackColor and
EditForeColor should be chosen carefully to make a pleasing effect if your grid is editable:

MarqueeStyle = 3 - Highlight Row

The entire row will be highlighted, but it won't be possible to tell which cell is the current cell in the
row:

MarqueeStyle = 4 - Highlight Row & Cell

This value should only be used if 3D lines are used in the grid, since cell highlighting is accomplished
using a "raised" appearance for the current cell:

MarqueeStyle = 5 - None

This setting will make the marquee disappear completely.    Often this setting is useful for cases where
the current row is irrelevant, or where you don't want to draw the user's attention to the grid until
necessary.

Using TrueGrid's Multiple Selection Feature

 Multiple selection overview
 How the user selects multiple rows
 Working with the list of marked rows in your programs
 Clearing marked rows using Visual Basic code

Multiple Selection Overview
TrueGrid supports a powerful and convenient means for selecting multiple rows of data and working with
them in your programs.    Here are some important features of multiple selections:

1. Users can select and deselect rows directly using the mouse.

2. The BookmarkList property contains a complete list of all currently selected rows.

3. You can modify the BookmarkList directly, and the grid responds by showing or clearing the
highlight on selected rows.

4. The SelectMode property gives you control over how the selection appears and operates.

The SelectMode property has 4 possible values:

0 - Disabled.    This is the default.    The user cannot select rows using the mouse.    However, if there
is an existing selection present (such as one created by adding to BookmarkList), then it will be
displayed.

1 - Enabled.    The user can select rows using the mouse, and any selected rows are displayed.

2 - Disabled & Hidden.    Like Disabled, the user cannot select rows.    In addition, any existing
selection will not be visible.    However, the selection is maintained internally.

3 - Enabled & Hidden.    An odd setting, where the user may select rows, but they won't be shown.    If
you find a use for this, let us know.

You can change the SelectMode at runtime in order to alternately show and hide the current selection.

How the User Selects Multiple Rows
For the user, the selection process is easy.    To select a row, the user moves the mouse into the leftmost
margin of the grid until a small checkmark appears.    At that point, they can select a row, or deselect an
already selected row.

Here, a grid appears with the mouse in the selection area and two rows (the first and third) selected):

[Picture of selection omitted to save space for demo help file.]

Notice how the color scheme chosen using SelectedForeColor and SelectedBackColor does not conflict
with the existing color scheme or marquee presentation.    Making such choices carefully is important to
assure that your user interface is easy to understand.

Unless you disable user selection (using SelectMode) the user can always select or deselect records,
whether they were selected by the program (using BookmarkList) or whether they were originally selected
by the user.    This can be very useful.    For example, an initial selection set can be highlighted using a
query, then the user can add and remove records at their discretion.

Working with the List of marked Rows in your Programs
The grid maintains a list of all selected rows in the BookmarkList property.    This property contains a list of
bookmarks, each corresponding to one of the selected grid rows.    The BookmarkCount property
indicates how many bookmarks are currently in the list (and hence how many rows are selected).

You can use the BookmarkList to monitor the selection being made by the user, or to add additional
selected rows of your own.    For example, once a selection is made, you could use the following code to
go through the marked rows one at a time and perform some operation on each:

For i% = 0 To Table1.BookmarkCount - 1

' Position to the row
Data1.RecordSet.Bookmark = Table1.BookmarkList(i%)

' Process the current row, then move on
ProcessCurrentRecord Data1

Next i%
Note that changing the Bookmark property for the current data control's RecordSet will have the side
effect of positioning the grid to the new location.    You may want to create a clone of the record set so you
can process each record without affecting the rest of your application.

You can add bookmarks to the list of bookmarks for a grid, which will cause them to be highlighted.    To
do this, you assign to the BookmarkList using an index one higher than the highest bookmark:

Sub HighlightManagers()
' Set criteria for FindFirst/FindNext
criteria$ = "TITLE = " + chr$(34) + "Manager" + chr$(34)

' Loop through, adding each manager to the BookmarkList
Data1.RecordSet.FindFirst criteria$
While Not Data1.RecordSet.EOF

Table1.BookmarkList(Table1.BookmarkCount) =
Data1.RecordSet.Bookmark

Data1.RecordSet.FindNext criteria$
Wend

End Sub
Clearing Marked Rows using Visual Basic Code
You can use the BookmarkList to clear selected rows as well:

1. To clear a single row, set the corresponding element in the BookmarkList property array to an
empty string ("").    When you do this, the grid decrements the BookmarkCount property
automatically and moves all subsequent bookmarks down by one index position, thus removing
the deleted bookmark.    At the same time, any highlighted rows corresponding to the bookmark
will no longer be highlighted.

2. You can clear the entire selection by setting BookmarkCount to zero (0).

Using TrueGrid in Callback (Application) mode

 Introduction to TrueGrid Callback mode
 Steps to create a Callback mode application
 Creating a user friendly callback program

Introduction to TrueGrid Callback mode
When used in "Application (or Callback) mode"    (i.e., the DataMode property of the grid is set to 1) the
grid is not connected to a database file.    Instead, data in the grid will be supplied and maintained by the
programmer while the grid takes care of all user interaction and data display.

For example, the user may cover the grid (either completely or partially) with another window and later
uncovers it.    The grid will be completely responsible to determine when and what portion of the grid need
to be repainted, while the programmer does not need to know about any user interaction or display
requirement at all.

The programmer needs only to concentrate on maintaining his data.    When the grid needs to display
data on the screen, it will ask the programmer for it via the Fetch event.    Conversely, after user has made
changes to the data in the grid, the grid will notify the programmer of the changes via the Update event so
that the programmer can update his data to reflect the changes.    If data is changed internally rather by
user editing on the grid, the programmer should notify the grid to repaint either by using the RefreshRow
or RefreshColumn property, or by using the Refresh method.

The programmer should also make use of other TrueGrid events to make his application user friendly.   
These techniques are illustrated in the sections below and in the dBTable sample application that is
included which with the TrueGrid product.

Steps to Create a Callback Mode Application
The basic steps for creating a TrueGrid application using callback mode are described below:

1. Determine method to store data.    The programmer is responsible to maintain and store data to
be displayed on the grid.    The most common way is to store the data in Visual Basic arrays.    If
the grid is very large (say, 1,000,000 rows by 5,000 columns), there may not be sufficient system
memory to store the arrays and the programmer then needs to store the data in files or other
storage media.    (When that happens, databases are usually used to store the data and the
programmer reverts to using the Database mode of the grid.)    Another possibility is data
displayed in the grid depends on some formula (usually a function of row and column numbers).   
The programmer then defines the data formula in the Fetch event.

2. Initialize the data and the grid.    As soon as the grid is loaded it will start asking the programmer
(via the Fetch event) for data to display.    So the programmer should initialize the data before the
grid is ready.    A good place to do this is either the Main procedure (if you start you program with
Main) or the Form_Load procedure (for the Form which contains the grid).    The programmer
then has to initialize some grid properties.    Some of the grid properties can be initialized at
design time using either the properties window or the TrueGrid Layout Editor.    We will illustrate
below how to initialize some properties at runtime.    Assuming you have a 3 rows by 2 column
table entry and you store the data using 3 arrays (one array per row), the following code initializes
the data and grid properties:

' Declare grid data as global array in some global module
Global Row1(1 to 2) As String
Global Row2(1 to 2) As String
Global Row3(1 to 2) As String

' Initialize array data in Main() or Form_Load()
For i% = 1 to 2

Row1(i%) = "Row 1, Col" + Str$(i%)
Row2(i%) = "Row 2, Col" + Str$(i%)
Row3(i%) = "Row 3, Col" + Str$(i%)

Next
...
' Assuming the control name of the grid is Table1, initialize
' grid properties in Form_Load():
' Define column heading text. This can be done in code at
' runtime or in the Layout Editor during design time.
Table1.ColumnName(1) = "Col 1"
Table1.ColumnName(2) = "Col 2"

' Maximum number of characters allowed for columns. (i.e.,
' User can enter no more than the number of characters
' specified below.)
Table1.ColumnSize(1) = 16
Table1.ColumnSize(2) = 16

' Columns display widths (in characters). ColumnWidth are
' usually bigger than ColumnSize so that the table will look
' nice and will not be crowded.
Table1.ColumnWidth(1) = 20
Table1.ColumnWidth(2) = 20

' Column styles. Specify left, center, or right justified.
' Also specifies if a column is read-only (i.e., user cannot
' edit that column). The column style constants are defined
' in TGCONST.TXT (in your TrueGrid installation directory).
Table1.ColumnStyle(1) = GRS_LEFT + GRS_READONLY
Table1.ColumnStyle(2) = GRS_RIGHT + GRS_READONLY

' Define number of rows in the table.
Table1.Rows = 3

' Initialize current cell position to upper left corner:
Table1.RowIndex = 1
Table1.ColumnIndex = 1

Note that the grid originally has zero number of columns, as you start setting the 1st, 2nd, column
properties, etc., the number of columns automatically increases. Alternatively, you can set the
number of grid columns by saying:

Table1.Columns = 2
3. Define the Fetch event.    After the grid is loaded, it will start asking the programmer for data to

display.    This is done via the Fetch event.    The programmer feeds data to the grid according to
the Row and Col values:

Sub Table1_Fetch (Row As Long, Col As Integer, Value As String)
If Row =1 Then

Value = Row1(Col)
Else

Value = Row2(Col)
End If

End Sub
The programmer cannot make any assumption as to when the grid will ask for data.    Also, the
programmer cannot make the assumption that if data for a certain Row/Col is asked once, the
grid will not ask for it again.    In short, it's the programmer's responsibility to store and maintain
the data, and it's the grid's responsibility to display them properly.    This technique will free the
programmer from worrying when and how to display data in the grid.

4. Define the Update event.    After the user has finished editing data in a cell and the data has been
validated by the programmer via the Validate event, the grid will then notify the programmer the
cell now has a new value via the Update event.    In this event, the programmer uses the value
supplied by the grid to update the data he or she is responsible for storing and maintaining:

 Sub Table1_Update (Row As Long, Col As Integer, Value As String)
If Row =1 Then

Row1(Col) = Value
Else

Row2(Col) = Value
End If

End Sub
5. Refresh the grid if data has been changed by the program.    If data is changed by the program

instead of by the user editing on the grid, the programmer must notify the grid of the changes so
that the grid will properly display the updated data.    This can be done by one of the following
three methods:

' Using the RefreshRow property to repaint a row (in this
' example, row number 2):
Table1.RefreshRow = 2

' Using the RefreshColumn property to repaint a column (in
' this example, column number 1):
Table1.RefreshColumn = 1

' Using the Refresh method to repaint the entire grid:
Table1.Refresh

Creating a User Friendly Callback Program
This section describes using three TrueGrid events to assist user in the data entry process and thus
creating a user friendly table entry program.    The events used in this application are only some of the
TrueGrid events available.    After learning this application, you should familiarize yourself with all
available TrueGrid events and start using them to create your own user-friendly applications.    Also,
examine the dBTable sample application for more details.

1. Using the KeyPress event.    The programmer can use KeyPress event to restrict and modify
user key input.    The following example converts the user key entry to upper case letters, and
restrict the user entry to letters and digits only.

Sub Table1_KeyPress (KeyAscii As Integer)
' Convert key to upper case
ToUpper KeyAscii

' Cancel user key input if it is not a letter or a digit
If (KeyAscii < 65 And KeyAscii > 90) And (KeyAscii < 48 And

KeyAscii > 57) Then
KeyAscii = 0

End If
End Sub

2. Using the Validate event.    Before moving to another grid cell, this routine lets the programmer
examine the value in the current cell.    If the value entered is invalid, the programmer can
(optional) display a message, then set Cancel to True to prohibit the user moving on to another
cell.    The Validate and KeyPress events together provide a very easy way for programmers to
check, restrict and validate user input in TrueGrid.

Sub Table1_Validate (Row As Long, Col As Integer, Value As String,
Cancel As Integer)

Select Case Row

Case 1
' Valid if starts with "Row 1"
If Left(Value, 5) = "Row 1" Then Exit Sub

Case 2
' Valid if start with "Row 2"
If Left(Value, 5) = "Row 2" Then Exit Sub

End Select

' Display warning message for user
MsgBox "Invalid Value"

' Data validation fails, prohibit user from moving to
' another cell
Cancel = True

End Sub
3. Using the ColumnChange event.    User can use the _ColumnChange() event to display a

different help string when the user is at different table column.    This is to make the program user
friendly by assisting the user during the data entry process.

Sub Table1_ColumnChange ()
' When this event is called, ColumnIndex has the new column
' position value
Select Case

Case 1
' Display help string at Label1
Label1.Caption = "Please enter value for Column 1"

Case 2
' Display help string at Label1
Label1.Caption = "Please enter value for Column 2"

Case 3
' Display help string at Label1
Label1.Caption = "Please enter value for Column 3"

End Select
End Sub

 TrueGrid Properties
TrueGrid Properties are used to define a state or characteristic of the grid control.    Properties can be set
at design time via the properties window.    The contents of the properties can be referenced, and usually
modified at runtime also.    Here is the list of the grid control properties:
Active ColumnVisible HorzColor Rows
BookmarkCount ColumnWidth HorzLines SelectedBackColor
BookmarkList Configurable Hwnd SelectedForeColor
BottomRow DataChanged HwndEdit SelectMode
ColumnChanged DataMode InactiveBackColor SelLength
ColumnField DataSource InactiveForeColor SelStart
ColumnIndex Editable Layout SelText
ColumnName EditBackColor LeftColumn Text
ColumnOrder EditForeColor MarqueeStyle TopRow
Columns EditMask RefreshColumn VertColor
ColumnSize HeadBackColor RefreshRow VertLines
ColumnStyle HeadForeColor RightColumn
ColumnText Headings RowIndex

Standard Properties

 Grid Events
These event functions can be associated with a grid control and are used to respond to database events. 
Events enable the programmer to specialize the actions of a grid control.

Append
CellChange
Change
ColumnChange
Fetch
RowChange
Update
Validate

Standard Events

Grid Active Property
Usage grid.Active = boolean

Read/Write at design time and run time.
Valid only in database mode; not used in callback mode.

Description This property determines if the grid will respond to changes made to the database using
other database functions (either in code, or via other bound controls).    When True, the
grid will refresh itself automatically when the record pointer is moved (using commands
like Data1.Recordset.MoveNext) or when records are added, deleted, updated, sorted, or
when selections are made using SQL statments.    When set to False, the grid will not
refresh itself automatically.

Normally, you should leave this property set to True, and you should rarely need to
change it.    Even when Active is set to True, the grid automatically suppresses updates to
the grid while your program code is executing.      Thus, you can perform any number of
complex operations, and the grid will remain unchanged until your program becomes idle
or until you send the Refresh method to the grid.    Because of this automatic behavior,
you should rarely need to use the Active property.

Once case where it is useful to set Active to false is when you are displaying a modal
dialog and a grid is present elsewhere on the screen.    For example, if you were to create
a modal dialog which will calculate totals for columns, the grid would normally track the
record you are currently positioned to, which may be undesirable.    In such
circumstances, you might want to set Active to False so it remains dormant until the
dialog completes its task.

This behavior is different from bound text boxes, which update instantly even while your
program is running.

When set to False, the grid can still be used interactively.    However, the data displayed may not be the
actual data in the visible records.    This situation can be very confusing to the user and should be
avoided.    As soon as Active is set to True, the grid will refresh itself if necessary, then remain in sync with
the database thereafter.

Grid BookmarkCount Property
Usage grid.BookmarkCount = numericexpression

Read/Write at run time.    Not available at design time.

Description This property contains the number of rows currently selected.    The current highlighted
row is not considered a selected row.    Only rows selected by the user using the
checkmark cursor, or added to the BookmarkList directly are considiered "selected".   
Row selection is controlled by the setting of the SelectMode property.

As the user selects rows, BookmarkCount increases to reflect the current selection size.   
Adding selected bookmarks to the BookmarkList will also cause the BookmarkCount to
increase.

You can only set the value of BookmarkCount to zero (0), which clears the BookmarkList
and any selected rows on the grid.    Any other value is illegal.

See Also For a complete discussion of multiple selection, with examples, see Multiple Selection
Overview.

Grid BookmarkList Property
Usage grid.BookmarkList(index) = bookmarkstring

Read/Write at run time.    Not available at design time.

Description The BookmarkList property contains a list of bookmarks for all selected grid rows.    When
the user selects rows, their bookmarks are automatically added to the BookmarkList and
BookmarkCount is automatically incremented.    The ability to select rows is controlled by
the SelectMode property.

The index value is zero-based and has a maximum value one less than the current value
of BookmarkCount.

All bookmarks in the list can be read, but you can only add bookmarks to the end of the
list:

tb.BookmarkList(tb.BookmarkCount) = Data1.RecordSet.Bookmark
You can remove an individual bookmark (and unhighlight it in the grid) if you know the
bookmark index.    This is done by setting the particular value in the list to an empty string:

tb.BookmarkList(5) = ""
The above line of code removes the bookmark for the 5th selected row.    The selection
highlighting will disappear, the BookmarkCount will be decreased by one, and any
bookmarks higher in the list will be moved down by one (filling the slot vacated by
bookmark item 5).

See Also For a complete discussion of multiple selection, with examples, see Multiple Selection
Overview.

Grid BottomRow Property
Usage numericresult = grid.BottomRow

Read-only at run time.    Not available at design time.

Description This property denotes the one-based index of the bottommost grid row.    The difference
between this property and the TopRow property, plus 1, is the number of records currently
visible in the grid.    If there are fewer rows of data than screen rows, BottomRow will refer
to the bottom row of data, not the bottom screen row.

To the grid, the term row number refers to the row within the overall set of data being
browsed, rather than the screen row number.    Whether in callback or database mode,
row 1 does not refer to the topmost row of the displayed grid, but refers to the first row of
data.    A grid may contain thousands or even millions of rows.

Grid ColumnChanged Property
Usage boolean = grid.ColumnChanged(column)

Read-only at run time.    Not available at design time.

Description The ColumnChanged property returns True if the data in the current row of the specified
column has been edited by the user, but has not yet been updated to the database.    This
happens if a cell has been edited, but the current row position hasn't yet been moved, or
if it is about to be moved and a Validate handler is executing.

Cells which have been changed, but not yet updated, appear in red in the grid until they
are written to the database.

The DataChanged property is always True when one or more columns have a True value
for their ColumnChanged property.    Setting DataChanged to False has the side effect of
changing all ColumnChanged values to False as well.

This property is especially useful in data control Validate handlers, and used in
conjunction with the ColumnText property.

See Also Data Validation Techniques

Grid Columns Property
Usage grid.Columns = numericexpression

Read/Write at run-time.    Not available at design time.

Description This property returns the number of columns currently defined for the grid.    This value
reflects the number of columns which can potentially be displayed, but does not reflect
the number of actual columns displayed.    This depends upon whether columns are
visible (using the ColumnVisible property) and whether they are scrolled off the display on
the right or left.

In callback and database modes, columns are created automatically when properties
such as ColumnName are used to assign characteristics to a new column.

The value of Columns may be set to zero, which will physically remove all column
information from the grid's memory.    All data and headings will be cleared, and the
ColumnIndex property will subsequently return zero, indicating that there is no data on
the grid.

Attempting to set Columns to a non-zero value is not allowed and will cause a Visual
Basic error.

Grid ColumnField Property
Usage grid.ColumnField(column) = stringexpression

Read/Write at run time.    Access via Layout Editor at design time.

Description This property holds the database field name for a grid column.    It will be set
automatically if Layout is chosen while a valid DataSource is present at design-time.    It is
usually not needed in callback mode.

This property is useful for adding new columns to an existing grid layout when the
structure of its associated database has been modified.

When assigning a value to this property, you can use a column index one greater than
the maximum number of columns currently contained in the grid (returned by the
Columns property).    The grid will create a new column and automatically increase the
column count.

Side Effects If the ColumnField property is set, the column will be refreshed with data from the new
field.

Grid ColumnIndex Property
Usage grid.ColumnIndex = numericexpression

Read/Write at run time.    Not available at design time.

Description This property denotes the one-based index of the current cell's column position.    It may
be set at run time to highlight a different cell within the current row.    If the column is
visible, the marquee will be moved to the selected column.    If the column is not visible, it
will be made visible as as a result of setting this property.

Immediately after a new grid is created, there is no layout, so this property has a value of
0, even though technically this value is out of range.

Side Effects The new column will become visible (which may have an effect on the LeftColumn
property).    In any case, the marquee will be move to the selected column.

Marquee
A dotted box, highlighted cell, or highlighted row around the perimeter of the current grid cell.

See also

MarqueeStyle

Grid ColumnName Property
Usage grid.ColumnName(column) = stringexpression

Read/Write at run time.    Access via Layout Editor at design time.

Description This property holds the heading text for a grid column.    It is set to the appropriate
attribute name automatically when the Layout property is selected and DataSource is set
to a properly specified database.    It may also be set at run time in either callback or
database mode.

In callback mode, a value should be supplied if headers are desired, either via the Layout
Editor or in code at run time.   

The Layout Editor may be used at design time to change the default values used in
automatic database mode, or to assign new values for callback mode.

When assigning a value to this property, you can use a column index one greater than
the maximum number of columns currently contained in the grid (returned by the
Columns property).    The grid will create a new column and automatically increase the
column count.

Side Effects This call will automatically refresh the headings to reflect the changed column name.

Grid ColumnOrder Property
Usage grid.ColumnOrder = numericexpression

Read/Write at run time.    Column order can be specified in the Layout Editor at design
time.

Description This property holds the one-based sequence number for a grid column (i.e., the position
of the column within the grid layout).    In database mode, columns are ordered according
to the database field layout.

At run time, this property array is changed automatically when the user shuffles columns
with the mouse.    You can change this property using code, which causes the columns to
appear in a different order in the grid.

When you refer to a column element in code, the order of the columns in the grid does
not need to be known.    For example, referring to ColumnName(1) will always access the
same column name, regardless of whether the columns have been moved by the user or
whether their ColumnOrder property has been changed.    This allows code to be
consistent while still permitting users to customize column positions to their liking.

ColumnOrder example

Side Effects The columns will be repositioned on the display if necessary.

ColumnOrder Example
The grid contains five columns: NAME, ADDRESS, CITY, STATE, ZIP.    The user drags the STATE
column to the first column position.    The ColumnOrder array now looks like this:

ColumnOrder(1) = 2 ' NAME
ColumnOrder(2) = 3 ' ADDRESS
ColumnOrder(3) = 4 ' CITY
ColumnOrder(4) = 1 ' STATE
ColumnOrder(5) = 5 ' ZIP

To achieve the same result in code, you would have to execute the first four of these assignment
statements.    By itself, the statement

Table1.ColumnOrder(4) = 1
 merely exchanges the NAME and STATE columns.

Grid ColumnSize Property
Usage grid.ColumnSize(column) = numericexpression

Read/Write at run time.    Not available at design time.

Description This property holds the database width, in bytes, for each grid column.    It is set to the
appropriate field width (not display width) automatically when the DataSource property is
set and the Layout property is chosen for the first time.    It may also be set at run time in
either callback or database mode.

This property does not affect the grid layout, but imposes a limit on the number of
characters that may be entered when editing a cell.    If set to zero, no such limits are
imposed.

If the value of this property is 256 or greater, then the column in question cannot be
edited.    Even if this value is zero (as is the case with native-mode fields), editing will be
disabled on a per cell basis if the field contains 256 or more characters.

In database mode, if the database does not supply a width value, then no limits are
imposed.    In either callback or database mode, a value may be supplied in code at run
time in order to restrict the amount of data the user can enter.

When assigning a value to this property, you can use a column index one greater than
the maximum number of columns currently contained in the grid (returned by the
Columns property).    The grid will create a new column and automatically increase the
column count.

Grid ColumnStyle Property
Usage grid.ColumnStyle(column) = integerexpression

Read/Write at run time.    Access via Layout Editor at design time.

Description This property determines justification and editability for a grid column.    By default, grid
columns are left-justified and editable, with the exception of numeric columns, which are
right-justified and editable.    This property is set to the appropriate value when the
DataSource property is set and the Layout property is selected for the first time.    It may
also be set at run time in either callback or database mode.    The Layout Editor may be
used at design time to change the default database mode values, or to assign new values
for callback mode.

The following constants can be used to set the value of this property:
Const GRS_LEFT = 0 ' Left justify column
Const GRS_CENTER = 1 ' Center column
Const GRS_RIGHT = 2 ' Right justify column
Const GRS_READONLY = 8192 ' Disable editing for column

When setting the ColumnStyle property, use one of the first three values, optionally Or'ed
with the last one.    When assigning a value to this property, you can use a column index
one greater than the maximum number of columns currently contained in the grid
(returned by the Columns property).    The grid will create a new column and automatically
increase the column count.

See Also ColumnSize, for a discussion of editability of potentially large items.

Side Effects The column will automatically be refreshed when this property is changed.

Grid ColumnText Property
Usage string = ColumnText(column)

Read-only at run time.    Not available at design time.

Description This property returns the cell text of the current row of the specified column.    The column
number must be between 1 and the maximum number of columns (specified by
Columns).

If the cell text has been edited, then the edited contents are returned rather than the
actual value of the data in the database.

This property is typically used in conjunction with ColumnChanged in order to perform
data validation on the entire modified grid row.

See Also Data Validation Techniques

Grid ColumnVisible Property
Usage grid.ColumnVisible(column) = boolean

Read/Write at run time.    Not available at design time.

Description This property determines whether a given column is actually displayed.    At run time,
when the user resizes a column down to nothing, this property is set to False for the
corresponding column, but the prior width is retained.    There is no way for the user to get
the column back unless the application developer provides a menu item or button that
resets this property to True.

In layout mode, columns which are hidden are physically removed from the layout and
cannot be retrieved unless the layout editing session is canceled and the changes
discarded.

When assigning a value to this property, you can use a column index one greater than
the maximum number of columns currently contained in the grid (returned by the
Columns property).    The grid will create a new column and automatically increase the
column count.

Side Effects The grid will be automatically refreshed to show or hide the chosen column.

Grid ColumnWidth Property
Usage grid.ColumnWidth(column) = numericexpression

Read/Write at run time.    Access via Layout Editor at design time.

Description This property holds the display width, in character units, for each grid column.    It is set to
the appropriate value automatically when the DataSource property is set and the Layout
property is selected for the first time.    It may also be set at run time in either callback or
database mode.

The actual column width depends upon the current font.    For fixed-width fonts, columns
will hold exactly as much data as ColumnWidth specifies.    For proportional fonts, the unit
of measurement is the average character width for the current font.

The maximum number of columns currently contained in the grid (returned by the
Columns property).    The grid will create a new column and automatically increase the
column count.

Side Effects When this property is changed, the grid will automatically reflect the changes.

Grid Configurable Property
Usage grid.Configurable = boolean

Read/Write at design time and run time.

Description This property determines whether the user can move and resize grid columns at run time.
By default, both of these operations are permitted.    If this property is changed while the
user is resizing or adjusting columns, then it will not take effect until the user has
completed the current operation.

Grid DataChanged Property
Usage grid.DataChanged = boolean

Read/Write at run time.    Not available at design time.

Description When a data control moves from record to record, the grid automatically moves its
highlighting to the new row and DataChanged is set to False.    If the data in the grid has
been changed in any way other than moving to a different record, DataChanged becomes
True.

Any grid data which has been changed is highlighted in red to indicate that it hasn't been
written to the database.    If DataChanged is True, you can inspect the values of
ColumnChanged and ColumnText to determine the exact nature of the changes.

When the data control starts to move to a different record, the Validate event occurs.   
Then if DataChanged is True for the grid, the data control invokes the Edit and
UpdateRecord methods.    Finally, data from the grid is saved to the database.

In the code for the Validate event, you can set this property to False where you do not
want to save the data in the database.    When set to False, any red highlighting which
indicated that the user has changed data disappears and the original data will appear in
its place.

See Also Data Validation Techniques

Grid DataMode Property
Usage grid.DataMode

Read-only at run time.

Values 0 - Database Mode (default)
1 - Callback, or application Mode

Description This property determines whether the grid fetches cell data from a database or from the
application (via the Fetch event).

The phrase "database mode" means that DataSource is 0.    The phrase "callback mode"
means that DataSource is 1.

When this property is set to 1, the grid operates in callback mode, in which it sends the
Fetch event to obtain cell data.    This allows grids to be used to browse and edit Visual
Basic arrays, DOS files, or other application-defined data.

When the property value is zero, the grid manages all database operations completely.   
In such cases, the database in use is determined by the setting of DataSource Property.   
In database mode, the Fetch event is never sent.

This property cannot be changed at runtime, so grids must operate in one mode or the
other at all times.

Grid DataSource Property
Usage Available only at design time.

Description This property is used to bind the TrueGrid control to a data control.    It must be set at
design time, and cannot be changed while the program is running.    In order to set
DataSource, a data control must already be present on the same form as the grid control.

Once the DataSource property is set, clicking on the Layout property will ask whether the
database layout should automatically be used by the grid.

Grid Editable Property
Usage grid.Editable = boolean

Read/Write at design time and run time.

Description This property determines whether the contents of the grid can be edited directly.    By
default, they can.

If this property is True, it may be overridden by the ColumnStyle property for an individual
column if the GRS_READONLY flag is in effect.    However, if this property is False, then
no editing events will be accepted for any column, regardless of ColumnStyle.

If the user is editing the current cell when this property is changed, the edit will continue
as usual.    However, no further editing will be permitted after the current edit is complete.

If the data control associated with the grid has its ReadOnly property set to True, then
editing will not be permitted, even if this property is set to True.    However, the value of
the Editable property itself will not be affected.

See Also ColumnSize, for a discussion of the editability of potentially large items.

Ideas Use a one-column grid in callback mode with the Editable property set to TRUE to
provide a list box in which the user can edit items directly.

Grid EditBackColor Property
Usage grid.EditBackColor = colorvalue

Read/Write at design time and run time.
Default is System Highlight Color (0x8000000D)

Description This property denotes the background color of the grid's editing window when editing is in
progress.    If editing is in progress, the color of the edit area will not be changed until the
current edit has been completed.

You can set this color by clicking on the ellipsis in the properties window .    A color palette
will appear which allows you to select a color.    You can also type the hexadecimal value
of a color directly into the settings box.   

Grid EditForeColor Property
Usage grid.EditForeColor = colorvalue

Read/Write at design time and run time.
Default is System Highlight Text Color (0x8000000E)

Description This property denotes the color of the grid's editing window text when editing is in
progress.    If editing is in progress, the color of the edit area will not be changed until the
current edit has been completed.

You can set this color by clicking on the ellipsis in the properties window.    A color palette
will appear which allows you to select a color.    You can also type the hexadecimal value
of a color directly into the settings box.

Grid EditMask Property
Usage grid.EditMask(column) = stringexpression

Read/Write at run time.    Access via Layout Editor at design time.
Ignored in callback mode.

Description The EditMask property allows you to specify a Visual Basic Format String which will be
used for formatting all data displayed in the specified column.    At design type, you can
use the Layout property to set a pre-defined value for this edit mask.

The format string will be used only for displaying data.    Data input will occur in
unformatted mode and the data will be reformatted when editing is complete.    If you do
not include an edit mask, or you set the EditMask property to an empty string, then data
will be displayed in the standard Visual Basic string representation for the field.

Grid HeadBackColor Property
Usage grid.HeadBackColor = colorvalue

Read/Write at design time and run time.
Default is System Active Caption Color (0x80000002)

Description This property denotes the background color of the grid's headings.

This color will be displayed only while the grid has focus.    When the grid loses focus, the
heading colors are determined by the current setting of InactiveForeColor and
InactiveBackColor.

You can set this color by clicking on the ellipsis in the properties window.    A color palette
will appear which allows you to select a color.    You can also type the hexadecimal value
of a color directly into the settings box.

Side Effects The grid headings will automatically be redrawn in the new color.

Grid HeadForeColor Property
Usage grid.HeadForeColor = colorvalue

Read/Write at design time and run time.
Default is System Caption Text Color (0x80000009)

Description This property denotes the color of the grid's heading text.

This color will be displayed only while the grid has focus.    When the grid loses focus, the
heading colors are determined by the current setting of InactiveForeColor and
InactiveBackColor.

You can set this color by clicking on the ellipsis in the properties window.    A color palette
will appear which allows you to select a color.    You can also type the hexadecimal value
of a color directly into the settings box.

Side Effects The grid headings will automatically be redrawn in the new color.

Grid Headings Property
Usage grid.Headings = boolean

Read/Write at design time and run time.

Description This property determines whether the grid displays column headings.    Setting this
property to False allows an additional row of data to be displayed.

Side Effects The grid will be redrawn in its entirety to effect the change.    Setting this property to False
disables column movement, since you can only move a column by grabbing its header.   
Column resizing is not affected. Setting this property to False will also erase the vertical
scroll bar if all records become visible.

Grid HorzColor Property
Usage grid.HorzColor = colorvalue

Read/Write at design time and run time.
Default is System Window Frame Color (0x80000006)

Description This property denotes the color of the grid's horizontal lines.    This color is only
meaningful if horizontal lines are turned on, via the HorzLines property.

You can set this color by clicking on the ellipsis in the properties window.    A color palette
will appear which allows you to select a color.    You can also type the hexadecimal value
of a color directly into the settings box.

Side Effects The grid headings will automatically be redrawn in the new color.

Grid HorzLines Property
Usage grid.HorzLines = numericexpression

Read/Write at design time and run time.

Values 0 - None (default)
1 - Single
2 - 3D

Description This property determines whether the grid displays horizontal lines between rows.

If the value of this property is 0, then no lines are displayed.    If the value is 1, then
single-width lines are displayed in the color specified by HorzColor.

If the value of this property is 2, then the grid will attempt to draw the lines in 3D mode.   
The grid uses the HorzColor value for the darker border of the 3D "groove" between cells,
and chooses another color from the available colors in the system palette.    Some
experimentation is usually required to achieve the desired effect.    The standard grey 3D
effect is chosen by selecting a dark grey color for the lines and a medium grey for the grid
background color.

Side Effects The grid will be redrawn in its entirety to effect the change.    Changing this property to a
non-zero value may decrease the number of lines which may be displayed (since
horizontal lines take up a bit more space).

Grid InactiveBackColor Property
Usage grid.InactiveBackColor = colorvalue

Read/Write at design time and run time.
Default is System Inactive Caption Color (0x80000003)

Description This property denotes the background color of the grid's headings whenever the grid
does not have focus.

When the grid does have focus, the heading color is controlled by the HeadForeColor
and HeadBackColor properties.

You can set this color by clicking on the ellipsis in the properties window.    A color palette
will appear which allows you to select a color.    You can also type the hexadecimal value
of a color directly into the settings box.

Side Effects The grid headings will automatically be redrawn in the new color if the grid currently does
not have focus.

Grid InactiveForeColor Property
Usage grid.InactiveForeColor = colorvalue

Read/Write at design time and run time.
Default is System Inactive Caption Text Color (0x80000013)

Description This property denotes the color of the grid's heading text whenever the grid does not
have focus.

When the grid does have focus, the heading color is controlled by the HeadForeColor
and HeadBackColor properties.

You can set this color by clicking on the ellipsis in the properties window.    A color palette
will appear which allows you to select a color.    You can also type the hexadecimal value
of a color directly into the settings box.

Side Effects The grid headings will automatically be redrawn in the new color if the grid currently does
not have focus.

Grid Layout Property
Usage This property is available only at design time.    Clicking on the Layout propety in the

property bar, or clicking over a grid with the right mouse button will bring up the Layout
Editor, which is used to configure per-column information in the grid.

Description The Layout property is a vehicle for manipulating the column layout of the grid.    The user
is presented with a modal dialog box which allows the following property arrays to be
changed at design time:    ColumnField, ColumnName, ColumnOrder, ColumnStyle,
ColumnWidth, EditMask.    The dialog box contains a replica of the grid in question, which
may be manipulated with the mouse just like at run time.

Within the properties window, one of the following non-editable strings is displayed:

(none) No layout information exists.

(database) Default layout information was read from the DataSource property.

(modified-database)
The user made changes to a database layout using the Layout
Editor.

(user-defined) Layout created from scratch.

Within the Layout Editor, double-clicking a column (or single-clicking with the right button)
pops up the following menu:

Each section of the menu has the following behavior:

- One of the text justification options will always be checked.    These correspond to the
GRS_LEFT, GRS_CENTER, and GRS_RIGHT values of the ColumnStyle property.

- Editable will not be checked if the ColumnStyle GRS_READONLY flag is set.

- The Heading Text and Field Name options are used to set the ColumnName and ColumnField
properties.

- The "Edit Mask" option allows you to specify a Visual Basic edit mask which will be used to format
the contents of the column.    The edit mask uses a Visual Basic Format$ Mask and is used only
for display purposes (input occurs with no mask).    For a complete description of this feature, see
the EditMask property description.   

- Insert Column will create a new column immediately to the left of the column where the menu was
first popped-up.    Delete Column will remove the corresponding column.    All changes are
permanent (although the entire layout editing session may be discarded using the Discard option
in the system menu for the Layout Editor).

If either the Heading Text or Field Name item is chosen, a small text editor appears within the column
heading area.    Type in the new value and hit the Enter key to commit the change, the Esc key to discard
it.

The Layout Editor does not have its own menu bar, but customizes the system menu as follows:

The Close option will save all changes made during the editing session and return to the Visual Basic
form.    The Discard option will forget all changes made during the editing session and return to the form.   
In the latter case, the original layout will remain unchanged.

The "Clear Fields" option will remove all fields from the current working layout (without disturbing the
original).    If you close the layout editor after Clear Fields, then the grid will be initialized just as if it had
never had a layout specified at all.

Side Effects All column properties may be affected except ColumnSize, which cannot be set in design
mode.    ColumnWidth is set implicitly when you resize a column with the mouse.

Grid LeftColumn Property
Usage grid.LeftColumn = numericexpression

Read/Write at run time.    Not available at design time.

Description This property denotes the one-based index of the leftmost grid column.    You can use this
property to scroll the grid horizontally in code at run time.    If the user scrolls the grid
using the horizontal scroll bar, this property will contain the column number of the column
which is currently at the left hand side of the grid.

Side Effects If changed, the grid will be redrawn to display the new column positions.

Grid MarqueeStyle Property
Usage grid.MarqueeStyle = numericexpression

Read/Write at design time and run time.

Values 0 - Dotted Cell Border (Default)
1 - Solid Cell Border
2 - Highlight Cell
3 - Highlight Row
4 - Highlight Row & Cell
5 - None

Description This property allows you to specify the method which the grid will use to highlight the
current row and cell in the grid.    There are six possible values for this property:

0 - Dottec Cell Border
The current cell within the current row will be highlighted by drawing a dotted border
around the cell.    In Microsoft Windows terminology, this is usually called a focus
rectangle.    This is the default value for this property.

1 - Solid Cell Border
The current cell within the current row will be highlighted by drawing a solid box around
the current cell.    This is more visible than the dotted cell border, especially when 3D
line properties are used for the grid.

2 - Highlight Cell
The entire current cell will be highlighted by inverting the colors within the entire cell.   
This provides a very distinctive block-style highlight for the current cell.

3 - Highlight Entire Row
The entire row containing the current cell will be highlighted by inverting the colors
within the row.    In this mode, it is not possible to visually determine which cell is the
current cell, only the current row.    When the grid is not editable, this setting is often
preferred, since cell position is then irrelevant.

4 - Highlight Row and Cell
The entire row will be highlighted.    The current cell within the row will be "raised" so
that it appears distinctive.    This setting doesn't appear clearly with all background and
color settings.    The best effect is achieved by using 3D lines and a grey background.

5 - None
The marquee will not be shown.

Changing this property at runtime has the effect of changing the cell highlighting for the
specified cell or row.

Grid RefreshColumn Property
Usage grid.RefreshColumn = numericexpression

Write only at run time.    Not available at design time.

Description This property allows a column of data to be refreshed without repainting the entire
window.    If set to zero, the current column (ColumnIndex) is refreshed.    Otherwise, the
specified column is refreshed.    If text editing is in progress, this call will have no effect on
the text being edited, but will refresh the data in the other rows.    You can use the Text
property to change the data in the cell being edited.

Typically, this call is useful only in callback mode, where the grid is unaware of changes
made to the cell data.    In database mode, the column will be refreshed as well, but
usually it is not necessary to do so.    However, if the grid's Active property is set to False,
the refreshed column will be filled with data from the current column of the database,
although the other columns may not reflect the change.

Grid RefreshRow Property
Usage grid.RefreshRow = numericexpression

Write only at run time.    Not available at design time.

Description This property allows a row of data to be refreshed without repainting the entire window.   
If set to zero, the current row (RowIndex) is refreshed if it is visible.    Otherwise, the
specified row is refreshed.    If text editing is in progress, this call will have no effect on the
text being edited, but will refresh the data in the other columns.    You can use the Text
property to change the data in the cell being edited.

Typically, this call is useful only in callback mode, where the grid is unaware of changes
made to the cell data.    In database mode, the row will be refreshed as well, but usually it
is not necessary to do so.    However, if the grid's Active property is set to FALSE, the
refreshed row will be filled with data from the current row of the database, although the
other rows may not reflect the change.

To TrueGrid, the term row number refers to the row within the overall set of data being
browsed, rather than the screen row number.    Whether in callback or database mode,
row 1 does not refer to the topmost row of the displayed grid, but refers to the first row of
data.    A grid may contain thousands or even millions of rows.

Grid RightColumn Property
Usage grid.RightColumn

Read-only at run time.    Not available at design time.

Description This property can be used to retrieve the one-based index of the rightmost grid column.   
The difference between this property and the LeftColumn property, plus 1, is the number
of columns currently visible.

Grid RowIndex Property
Usage grid.RowIndex = numericexpression

Read/Write at run time.    Not available at design time.

Description This property denotes the one-based index of the current row position.    It may be set at
run time to highlight a different cell within the current column.    When set in this fashion,
the specified row will be made visible if it is not already visible and the marquee will be
moved to the appropriate cell.

If the current cell is being edited, then the contents of the cell will be verified and the edit
will be completed before moving the cell pointer.    If the validation for the current cell fails
(due to the Validate event), then the cell pointer will not    be changed and the RowIndex
will remain the same as it was before this call was made.

If the value of RowIndex is zero, it indicates an empty selection set in database mode, or
the absence of data in callback mode.

In database mode, the current value of the Rows property may not reflect the actual
number of rows in the database.    In such cases, it is possible to set RowIndex to a value
which is larger than the actual number of rows in the current database or subset.    If you
set RowIndex to a value larger than the number of actual rows, the grid will attempt to
position the database to the newly selected row.    If the set does not contain the given
number of rows, the grid automatically sets Rows and RowIndex to their correct values.

To TrueGrid grid, the term row number refers to the row within the overall set of data
being browsed, rather than the screen row number.    Whether in callback or database
mode, row 1 does not refer to the topmost row of the displayed grid, but refers to the first
row of data.    A grid may contain thousands or even millions of rows.

Side Effects The grid will be scrolled or repositioned as necessary to cause the current cell to become
visible.    There are no side effects for accessing this value, only for setting it.

Ideas Setting RowIndex to the same value it presently has, such as:

Grid1.RowIndex = Grid1.RowIndex

will cause the current cell to be validated and editing completed.    this is a useful trick to
use if you want to force editing to completion.

Grid Rows Property
Usage grid.Rows = numericexpression

Read/Write at run time.    Not available at design time.

Description This property defines the number of rows displayed by the grid.    If set to zero, no data is
shown, although column headings will be displayed if they are enabled and there is at
least one column.

To TrueGrid, the value of Rows refers to the number of rows in the overall set of data
being browsed, rather than the number of rows displayed on the screen.    Whether in
callback or database mode, row 1 does not refer to the topmost row of the displayed grid,
but refers to the first row of data.    A grid may contain thousands or even millions of rows.

In callback mode, the grid will be repainted if this property changes the number of rows
which are visible on the display.    In addition, the scrollbars will be adjusted to reflect the
relative position of the current row with respect to the number of total rows.    If the
scrollbars are no longer needed they will be removed, and if not present, they will be
made visible if now required.

In database mode, this property is maintained by the grid and cannot be changed.   
Under many circumstances, however, this value will not reflect the actual number of rows
in the database.      This is because the grid itself does not attempt to determine how
many database rows there are until absolutely necessary.    Why?    Because many
queries (and database file formats) often require a great deal of work to determine how
many rows there are.

For example, if a database contains 10,000 records, and you perform a text search query,
all the records in the database must be scanned to find the matching rows.    If there are
1,000 matches, the grid would need to complete the entire query in order to set the Rows
property to the correct value.

Instead, the grid will simply set the row number to a very large value (currently 1,000,000)
until it encounters the last record in the set, at which point it will change the Rows
property to contain the correct value automatically.

Side Effects The grid and scrollbars will be adjusted to reflect the new row count when this value is
changed in callback mode.

Grid SelectedBackColor Property
Usage grid.SelectedBackColor = colorvalue

Read/Write at design time and run time.
Default is black.

Description This property denotes the background color to be used for rows which have been
selected by the user, or have been added to the BookmarkList.    Selected rows will only
appear if SelectMode is set properly.

You can set this color by clicking on the ellipsis in the properties window.    A color palette
will appear which allows you to select a color.    You can also type the hexadecimal value
of a color directly into the settings box.

Side Effects Any selected rows will automatically be redrawn in the new color.

See Also Multiple Selection Overview

Grid SelectedForeColor Property
Usage grid.SelectedForeColor = colorvalue

Read/Write at design time and run time.
Default is black.

Description This property denotes the foreground color to be used for rows which have been selected
by the user, or have been added to the BookmarkList.    Selected rows will only appear if
SelectMode is set properly.

You can set this color by clicking on the ellipsis in the properties window.    A color palette
will appear which allows you to select a color.    You can also type the hexadecimal value
of a color directly into the settings box.

Side Effects Any selected rows will automatically be redrawn in the new color.

See Also Multiple Selection Overview

Grid SelectMode Property
Usage grid.SelectMode = numericexpression

Read/Write at design time and run time.

Values 0 - Disabled (default)
1 - Enabled
2 - Disabled & Hidden
3 - Enabled & Hidden

Description SelectMode specifies whether or not the selection is visible, and whether the user may
select and deselect rows using the mouse.    By default, selections are visible, but the
user may not select rows.

The SelectMode property has 4 possible values:

0 - Disabled.    This is the default.    The user cannot select rows using the mouse.   
However, if there is an existing selection present (such as one created by adding to
BookmarkList), then it will be displayed.

1 - Enabled.    The user can select rows using the mouse, and any selected rows are
displayed.

2 - Disabled & Hidden.    Like Disabled, the user cannot select rows.    In addition, any
existing selection will not be visible.    However, the selection is maintained internally.

3 - Enabled & Hidden.    An odd setting, where the user may select rows, but they won't
be shown.    If you find a use for this, let us know.

Changing the value of SelectMode at runtime will cause the selection to be hidden or
shown if necessary.

See Also Multiple Selection Overview

Grid SelLength, SelStart, SelText Properties
Usage grid.SelLength = numericexpression

grid.SelStart = numericexpression
grid.SelText = stringexpression

Read/Write at run time.    Not available at design time.

Description These properties are identical to their counterparts in Visual Basic text controls, and
apply to the grid's text editing window.    When the user has selected text for editing, these
properties return the length of the selected text, the start of the selection, and the actual
text contents of the selection.

If no cell is currently opened for editing, and only the marquee is present, then SelLength
and SelStart will always return zero, and SelText will return an empty string.

Note that the color of the edit area may have to be changed using EditForeColorand
EditBackColor for the selection to become visible.    This is because the default editing
color is the same as the highlight color.

Grid Text Property
Usage grid.Text = stringexpression

Read/Write at run time.    Not available at design time.

Description The Text property may be used to retrieve or set the contents of the current cell being
edited by the user.    It has no effect upon the data in the database, and does not cause
the Validate or Update events to be sent under any circumstances

If the current cell is currently open for editing by the user, then this property returns the
text they are currently working on.    If the Text property is set, then the information in the
edited cell will change to match the new value and the old text will be lost.    As stated,
Update and Validate will not be triggered.

If the current cell is not being edited (the marquee is displayed around the current cell),
then this property will return the visible contents of the current cell.    This may not    be the
value stored in the database, since the grid does not refresh its display until it receives
control during the idle loop.    Thus, the following sequence of steps will not work as
expected:

' Open a file and attempt to fetch cell data

Data1.DatabaseName = "BIBLIO.MDB" ' grid using ds=Data1
Data1.RecordSource = "Titles"
Data1.Refresh
Grid1.RowIndex = 1
Grid1.ColumnIndex = 1
dataval$ = Grid1.Text' will not work

If you assign to the Text property while the current cell is not being edited, then the grid
will enter edit mode immediately and set the current cell data to the new value of the Text
property.    Thus, the following line of code will cause the grid to enter editing mode
immediately:

Grid1.Text = Grid1.Text
If the current cell is not visible when the assignment occurs, the grid will be scrolled so
that the cell is visible before edit mode is entered.

Attempting to manipulate the current cell has its limitations.    The grid will leave editing
mode automatically under many circumstances (such as when focus is lost).    Therefore,
code which manipulates the current cell being edited shouldn't be used in contexts where
focus might be lost easily (such as in another button on the form).

Side Effects When set, causes the current cell to enter edit mode and changes the edited text to the
new text.    No side effects upon access.

Grid TopRow Property
Usage grid.TopRow = numericexpression

Read/Write at run time.    Not available at design time.

Description This property denotes the one-based index of the topmost grid row.    You can use this
property to scroll the grid vertically in code at run time just as the RowIndex property can
be used.

To the grid, the term row number refers to the row within the overall set of data being
browsed, rather than the screen row number.    Whether in callback or database mode,
row 1 does not refer to the topmost row of the displayed grid, but refers to the first row of
data.    A grid may contain thousands or even millions of rows.

In database mode, it is possible to set TopRow to a value larger than the actual number
of rows in the database.    See the description of Rows and RowIndex for a discussion of
how database mode treats the row number and row count.

Side Effects The grid will be redisplayed so that the top row is the selected row.    Upon access, there
are no side effects.

Grid VertColor Property
Usage grid.VertColor = colorvalue

Read/Write at design time and run time.
Default is System Window Frame Color (0x80000006)

Description This property denotes the color of the grid's vertical lines.    This color is only meaningful if
vertical lines are turned on, via the VertLines property.

You can set this color by clicking on the ellipsis in the properties window.    A color palette
will appear which allows you to select a color.    You can also type the hexadecimal value
of a color directly into the settings box.

Side Effects The vertical lines will automatically be redrawn in the new color.

Grid VertLines Property
Usage grid.VertLines = numericexpression

Read/Write at design time and run time.

Values 0 - None (default)
1 - Single
2 - 3D

Description This property determines whether the grid displays vertical lines between rows.

If the value of this property is 0, then no lines are displayed.    If the value is 1, then
single-width lines are displayed in the color specified by VertColor.

If the value of this property is 2, then the grid will attempt to draw the lines in 3D mode.   
The grid uses the VertColor value for the darker border of the 3D "groove" between cells,
and chooses another color from the available colors in the system palette.    Some
experimentation is usually required to achieve the desired effect.    The standard grey 3D
effect is chosen by selecting a dark grey color for the lines and a medium grey for the grid
background color.

Side Effects The grid will be redrawn in its entirety to effect the change.

Grid Standard Properties
Standard Properties
The grid also supports the following standard Visual Basic properties.    Consult the Visual Basic
documentation for details.

BackColor BorderStyle DragIcon DragMode
Enabled FontBold FontItalic FontName
FontSize FontStrikeThru FontUnderLine ForeColor
Height HelpContextId Index Left
MousePointer Name TabIndex TabStop
Tag Top Visible Width

Grid Append Event
Syntax Grid_Append()

Description This event is sent whenever the user is at the bottom row of data in the grid, and they
attempt to move down one more row by using the down arrow key.

This event can be used to implement dBASE-like append behavior, where a record is
automatically added if you are at the last row of the grid and you attempt to move down
further.    Be careful, however, in implementing this.    If the user performs this operation
unintentionally, then you will have to delete the newly added record.

If this event is not implemented, then the grid takes no action whatsoever if an attempt is
made to move beyond the last row of data.    The marquee or editing area remains at the
same location.

Grid CellChange Event
Syntax Grid_CellChange()

Description This event is sent whenever the current cell position is changed.    The event is sent
under several circumstances:

1. When the grid is first displayed.

2. When the user moves the cell pointer by using the mouse or the keyboard.

3. When data in the grid is changed and causes the cell to change implicitly (such
as when the last record in a set is deleted, and the cell was currently positioned
on the same row).

4. When the RowIndex or ColumnIndex properties are set to a different value than
they currently have.

Typically, the RowIndex and ColumnIndex properties are used to determine the new cell
number.    In some cases, this event is triggered with a RowIndex or ColumnIndex
property value of zero.    These circumstances occur when there are no rows in the grid at
all.

When multiple events are sent, the order will be Change, RowChange, ColumnChange,
and finally CellChange.    None of these events will be sent until the data has been
validated using the Validate event.

Grid Change Event
Syntax Grid_Change()

Description This event is triggered each time the user changes text in the text editing window.    Just
as with the Visual Basic Text control, each keystroke causes a Change event to be
triggered.

This event is never sent when editing is not in progress.

When multiple events are sent, the order will be Change, RowChange, ColumnChange,
and finally CellChange.    None of these events will be sent until the data has been
validated using the Validate event.

Grid ColumnChange Event
Syntax Grid_ColumnChange()

Description This event is sent whenever the current column number is changed.    The event is sent
under several circumstances:

1. When the grid is first displayed.

2. When the user moves to a new column by using the mouse or the keyboard.

3. When the ColumnIndex property is changed to a different value than it currently
has, or the ColumnVisible property for the current column is set to FALSE.

4. If the current column size is decreased so that it no longer appears at all.

Typically, the RowIndex and ColumnIndex properties are used to determine the new cell
number.    In some cases, this event is triggered with a RowIndex or ColumnIndex
property value of zero.    These circumstances occur when there are no rows in the grid at
all.

When multiple events are sent, the order will be Change, RowChange, ColumnChange,
and finally CellChange.    None of these events will be sent until the data has been
validated using the Validate event.

Grid Fetch Event
Syntax Grid_Fetch(Row As Long, Col As Integer, Value As String)

Description In callback mode, this event is sent whenever the grid needs to display the contents of a
cell.    Just set the Value parameter to the desired string value.

In database mode, this event is not sent.

Grid RowChange Event
Syntax Grid_RowChange()

Description This event is sent whenever the current row position is changed.    The event is sent
under several circumstances:

1. When the grid is first displayed.

2. When the user moves the cell pointer to another row by using the mouse or the
keyboard.

3. When data in the grid is changed and causes the row to change implicitly (such
as when the last record in a set is deleted, and the cell was currently positioned
on the same row).

4. When the RowIndex property is changed to a different value than it currently has.

Typically, the RowIndex and ColumnIndex properties are used to determine the new cell
number.    In some cases, this event is triggered with a RowIndex or ColumnIndex
property value of zero.    These circumstances occur when there are no rows in the grid at
all.

To TrueGrid, the value of RowIndex refers to the row within the overall set of data being
browsed, rather than the screen row number.    Whether in callback or database mode,
row 1 does not refer to the topmost row of the displayed grid, but refers to the first row of
data.    A grid may contain thousands or even millions of rows.

This event should be used to determine when the user selects a new record.    Although
the Click event can also be used, it is not as reliable, since it doesn't allow for keyboard
activity.

When multiple events are sent, the order will be Change, RowChange, ColumnChange,
and finally CellChange.    None of these events will be sent until the data has been
validated using the Validate event.

Grid Update Event
Syntax Grid_Update(Row As Long, Col As Integer, Value As String)

Description This event is sent whenever the user has changed the text in the specified cell and is
about to commit the change by moving to a different cell.    If this event is sent, then the
contents of the cell have already been validated.   

This event is most useful in callback mode, where it is the only way changes to data in
the grid can take effect.    Typically, callback mode users will use this event to store the
grid data someplace where it can be accessed the next time a Fetch event is sent.

In database mode, all data storage is automatic.    However, actual record data is not
updated by Visual Basic until the row position changes.    Thus, each cell update reflects
that the user has changed the data and it is being held in the internal grid change buffer
until it is written to the database.

Grid Validate Event
Event Validate

Syntax Grid_Validate(Row As Long, Col As Integer, Value As String, Cancel As Integer)

Description In both database and callback modes, this event is sent whenever the user has changed
the text in the specified cell and is about to commit the change by moving to a different
cell.    If this event is not used, all changes are valid.    If this event code executes without
setting the value of the Cancel parameter, then the specified value is valid.   

Setting the Cancel parameter to True causes the grid to remain in editing mode until the
data is valid.    If the Validate handler is triggered because the grid has lost focus, then
setting Cancel to True will cause the grid to force focus to return to the editing area
automatically.

The validation code can perform any steps necessary to validate the input data.   
However, the code should avoid accessing or changing the current database (in database
mode), or setting any properties which may affect the current cell position in the grid.

Note that actual record data is not written to the database until the current row position changes.    Thus,
the Validate handler can be used to validate data immediately upon entry in the grid.    Additional
validation may be necessary (or desirable) in the data control Validate handler, since it is called when the
actual database update is about to occur.

Grid Standard Events
Standard Events
The grid also supports the following standard Visual Basic events.    Consult the Visual Basic
documentation for details.

Click DblClick DragDrop DragOver
GotFocus KeyDown KeyPress KeyUp
LostFocus MouseDown MouseMove MouseUp

Visual Basic Format Strings
TrueGrid uses standard Visual Basic format strings to provide display editing for columns within the Agility
grid control.    In Visual Basic, the Format$ function is used to edit values.    These format strings may be
entered at design time using the layout editor "Edit Mask..." option or by using the EditMask property.   
The following paragraphs describe the Visual Basic format string capabilities.

To format numbers, you can use the commonly-used formats that have been predefined in Visual Basic or
you can create user-defined formats with standard characters that have special meaning when used in a
format expression.

The following table shows the predefined numeric format names you can use and the meaning of each:

Format name Description
General Number Display the number as is, with no thousand separators.
Currency Display number with thousand separator, if appropriate; display negative numbers

enclosed in parentheses; display two digits to the right of the decimal separator.
Fixed Display at least one digit to the left and two digits to the right of the decimal

separator.
Standard Display number with thousand separator, if appropriate; display two digits to the right

of the decimal separator.
Percent Display number multiplied by 100 with a percent sign (%) appended to the right;

display two digits to the right of the decimal separator.
Scientific Use standard scientific notation.
Yes/No Display No if number is 0, otherwise display Yes.
True/False Display False if number is 0, otherwise display True.
On/Off Display Off if number is 0, otherwise display On.

The following table shows the characters you can use to create user-defined number formats and the
meaning of each:

Character Meaning
Null string Display the number with no formatting.
0 Digit placeholder.

Display a digit or a zero.    If there is a digit in the expression being formatted in the
position where the 0 appears in the format string, display it; otherwise, display a zero
in that position.
If the number being formatted has fewer digits than there are zeros (on either side of
the decimal) in the format expression, leading or trailing zeros are displayed.    If the
number has more digits to the right of the decimal separator than there are zeros to
the right of the decimal separator in the format expression, the number is rounded to
as many decimal places as there are zeros.    If the number has more digits to the left
of the decimal separator than there are zeros to the left of the decimal separator in
the format expression, the extra digits are displayed without modification.

Digit placeholder.
Display a digit or nothing.    If there is a digit in the expression being formatted in the
position where the # appears in the format string, display it; otherwise, display
nothing in that position.
This symbol works like the 0 digit placeholder, except that leading and trailing zeros
aren't displayed if the number has the same or fewer digits than there are #
characters on either side of the decimal separator in the format expression.

. Decimal placeholder.
The decimal placeholder determines how many digits are displayed to the left and

right of the decimal separator.    If the format expression contains only number signs
to the left of this symbol, numbers smaller than 1 begin with a decimal separator.    If
you want a leading zero to always be displayed with fractional numbers, use 0 as the
first digit placeholder to the left of the decimal separator instead.    The actual
character used as a decimal placeholder in the formatted output depends on the
Number Format specified in the International section of the Microsoft Windows
Control Panel.    For some countries, a comma is used as the decimal separator.

% Percentage placeholder.
The expression is multiplied by 100.    The percent character (%) is inserted in the
position where it appears in the format string.

, Thousand separator.
The thousand separator separates thousands from hundreds within a number that
has four or more places to the left of the decimal separator.    Standard use of the
thousand separator is specified if the format contains a comma surrounded by digit
placeholders (0 or #).    Two adjacent commas or a comma immediately to the left of
the decimal separator (whether or not a decimal is specified) means "scale the
number by dividing it by 1000, rounding as needed."    You can scale large numbers
using this technique.    For example, you can use the format string "##0,," to represent
100 million as 100.    Numbers smaller than 1 million are displayed as 0.    Two
adjacent commas in any position other than immediately to the left of the decimal
separator are treated simply as specifying the use of a thousand separator.    The
actual character used as the thousand separator in the formatted output depends on
the Number Format specified in the International section of the Control Panel.    For
some countries, a period is used as the thousand separator.

E- E+ e- e+ Scientific format.
If the format expression contains at least one digit placeholder (0 or #) to the right of
E-, E+, e-, or e+, the number is displayed in scientific format and E or e is inserted
between the number and its exponent.    The number of digit placeholders to the right
determines the number of digits in the exponent.    Use E- or e- to place a minus sign
next to negative exponents.    Use E+ or e+ to place a minus sign next to negative
exponents and a plus sign next to positive exponents.

: Time separator.
The time separator separates hours, minutes, and seconds when time values are
formatted.    The actual character used as the time separator depends on the Time
Format specified in the International section of the Control Panel.

/ Date separator.
The date separator separates the day, month, and year when date values are
formatted.    The actual character used as the date separator in the formatted output
depends on Date Format specified in the International section of the Control Panel.

- + $ () space Display a literal character.
To display a character other than one of those listed, precede it with a backslash (\)
or enclose it in double quotation marks (" ").

\ Display the next character in the format string.
Many characters in the format expression have a special meaning and can't be
displayed as literal characters unless they are preceded by a backslash.    The
backslash itself isn't displayed.    Using a backslash is the same as enclosing the next
character in double quotation marks.    To display a backslash, use two backslashes
(\\).
Examples of characters that can't be displayed as literal characters are the date- and
time-formatting characters (a, c, d, h, m, n, p, q, s, t, w, y, and /:), the numeric-
formatting characters (#, 0, %, E, e, comma, and period), and the string-formatting
characters (@, &, <, >, and !)."ABC" Display the string inside the double quotation

marks.
To include a string in fmt from within Visual Basic, you must use Chr(34) to enclose
the text (34 is the ANSI code for a double quotation mark).

* Display the next character as the fill character.
Any empty space in a field is filled with the character following the asterisk.    Unless
the fmt argument contains one of the predefined formats, a format expression for
numbers can have from one to four sections separated by semicolons.

If you use The result is
One section only The format expression applies to all values.
Two sections The first section applies to positive values and zeros, the second to negative values.
Three sections The first section applies to positive values, the second to negative values, and the

third to zeros.
Four sections The first section applies to positive values, the second to negative values, the third to

zeros, and the fourth to Null values.

The following example has two sections: the first defines the format for positive values and zeros; the
second section defines the format for negative values.

"$#,##0;($#,##0)"

If you include semicolons with nothing between them, the missing section is printed using the format of
the positive value.    For example, the following format displays positive and negative values using the
format in the first section and displays "Zero" if the value is zero.

"$#,##0;;\Z\e\r\o"

Some sample format expressions for numbers are shown below. (These examples all assume that
Country is set to United States in the International section of the Control Panel.)    The first column
contains the format strings.    The other columns contain the output that results if the formatted data has
the value given in the column headings.
Format (fmt) Positive 5 Negative 5 Decimal .5 Null
Null string 5 -5 0.5
0 5 -5 1
0.00 5.00 -5.00 0.50
#,##0 5 -5 1
#,##0.00;;;Nil 5.00 -5.00 0.50 Nil
$#,##0;($#,##0) $5 ($5) $1
$#,##0.00;($#,##0.00) $5.00 ($5.00) $0.50
0% 500% -500% 50%
0.00% 500.00% -500.00% 50.00%
0.00E+00 5.00E+00 -5.00E+00 5.00E-01
0.00E-00 5.00E00 -5.00E00 5.00E-01

Numbers can also be used to represent date and time information.    You can format date and time serial
numbers using date and time formats or number formats because date/time serial numbers are stored as
floating-point values.

To format dates and times, you can use either the commonly used formats that have been predefined in
Visual Basic or create user-defined time formats using standard characters that have special meaning
when used in a format expression.

The following table shows the predefined data format names you can use and the meaning of each:

Format Name Description
General Date Display a date and/or time.    For real numbers, display a date and time. (e.g. 4/3/93

05:34 PM); If there is no fractional part, display only a date (e.g. 4/3/93); if there is no
integer part, display time only (e.g. 05:34 PM).

Long Date Display a Long Date, as defined in the International section of the Control Panel.
Medium Date Display a date in the same form as the Short Date, as defined in the International

section of the Control Panel, except spell out the month abbreviation.
Short Date Display a Short Date, as defined in the International section of the Control Panel.
Long Time Display a Long Time, as defined in the International section of the Control Panel.

Long Time includes hours, minutes, seconds.
Medium Time Display time in 12-hour format using hours and minutes and the AM/PM designator.
Short Time Display a time using the 24-hour format (e.g. 17:45)

The following table shows the characters you can use to create user-defined date/time formats and the
meaning of each:

Character Meaning
c Display the date as ddddd and display the time as t t t t t, in that order.    Only date

information is displayed if there is no fractional part to the date serial number; only
time information is displayed if there is no integer portion.

d Display the day as a number without a leading zero (1-31).
dd Display the day as a number with a leading zero (01-31).
ddd Display the day as an abbreviation (Sun-Sat).
dddd Display the day as a full name (Sunday-Saturday).
ddddd Display a date serial number as a complete date (including day, month, and year)

formatted according to the Short Date setting in the International section of the
Windows Control Panel.    The default Short Date format is m/d/yy.

dddddd Display a date serial number as a complete date (including day, month, and year)
formatted according to the Long Date setting in the International section of the
Control Panel.    The default Long Date    format is mmmm dd, yyyy.

w Display the day of the week as a number (1 for Sunday through 7 for Saturday.)
ww Display the week of the year as a number (1-53).
m Display the month as a number without a leading zero (1-12).    If m immediately

follows h or hh, the minute rather than the month is displayed.
mm Display the month as a number with a leading zero (01-12).    If m immediately follows

h or hh, the minute rather than the month is displayed.
mmm Display the month as an abbreviation (Jan-Dec).
mmmm Display the month as a full month name (January-December).
q Display the quarter of the year as a number (1-4).
y Display the day of the year as a number (1-366).
yy Display the year as a two-digit number (00-99).
yyyy Display the year as a four-digit number (100-9999).
h Display the hour as a number without leading zeros (0-23).
hh Display the hour as a number with leading zeros (00-23).
n Display the minute as a number without leading zeros (0-59).
nn Display the minute as a number with leading zeros (00-59).
s Display the second as a number without leading zeros (0-59).
ss Display the second as a number with leading zeros (00-59).
t t t t t Display a time serial number as a complete time (including hour, minute, and second)

formatted using the time separator defined by theTime Format in the International
section of the Control Panel.    A leading zero is displayed if the Leading Zero option
is selected and the time is before 10:00 A.M. or P.M.    The default time format is

h:mm:ss.
AM/PM Use the 12-hour clock and display an uppercase AM with any hour before noon;

display an uppercase PM with any hour between noon and 11:59 PM.
am/pm Use the 12-hour clock and display a lowercase AM with any hour before noon;

display a lowercase PM with any hour between noon and 11:59 PM.
A/P Use the 12-hour clock and display an uppercase A with any hour before noon; display

an uppercase P with any hour between noon and 11:59 PM.
a/p Use the 12-hour clock and display a lowercase A with any hour before noon; display

a lowercase P with any hour between noon and 11:59 PM.
AMPM Use the 12-hour clock and display the contents of the 1159 string (s1159) in the

WIN.INI file with any hour before noon; display the contents of the 2359 string
(s2359) with any hour between noon and 11:59 PM.    AMPM can be either uppercase
or lowercase, but the case of the string displayed matches the string as it exists in the
WIN.INI file.    The default format is AM/PM.

The following are examples of user-defined date and time formats:

Format Display
m/d/yy 12/7/58
d-mmmm-yy 7-December-58
d-mmmm 7 December
mmmm-yy December 58
hh:mm AM/PM 08:50 PM
h:mm:ss a/p 8:50:35 p
h:mm 20:50
h:mm:ss 20:50:35
m/d/yy h:mm 12/7/58 20:50

Strings can also be formatted with Format[$].    A format expression for strings can have one section or
two sections separated by a semicolon.

If you use The result is
One section only The format applies to all string data.
Two sections The first section applies to string data, the second to Null values and zero-length

strings.

You can use any of the following characters to create a format expression for strings:

Character Meaning
@ Character placeholder.

Display a character or a space.    If there is a character in the string being formatted in
the position where the @ appears in the format string, display it; otherwise, display a
space in that position.    Placeholders are filled from right to left unless there is an !
character in the format string.    See below.

& Character placeholder.
Display a character or nothing.    If there is a character in the string being formatted in
the position where the & appears, display it; otherwise, display nothing.   
Placeholders are filled from right to left unless there is an ! character in the format
string.    See below.

< Force lowercase.
All characters are displayed in lowercase format.

> Force uppercase.
All characters are displayed in uppercase format.

! Force placeholders to fill from left to right instead of right to left.

